【深度学习】强化学习(二)马尔可夫决策过程

一、强化学习问题

强化学习的基本任务是通过智能体与环境的交互学习一个策略,使得智能体能够在不同的状态下做出最优的动作,以最大化累积奖励。这种学习过程涉及到智能体根据当前状态选择动作,环境根据智能体的动作转移状态,并提供即时奖励的循环过程。

1、交互的对象

在强化学习中,有两个可以进行交互的对象:智能体环境

  • 智能体(Agent):能感知外部环境的状态(State)和获得的奖励(Reward),并做出决策(Action)。智能体的决策和学习功能使其能够根据状态选择不同的动作,学习通过获得的奖励来调整策略。
  • 环境(Environment):是智能体外部的所有事物,对智能体的动作做出响应,改变状态,并反馈相应的奖励。
2、强化学习的基本要素

强化学习涉及到智能体与环境的交互,其基本要素包括状态、动作、策略、状态转移概率和即时奖励。

  • 状态(State):对环境的描述,可能是离散或连续的。
  • 动作(Action):智能体的行为,也可以是离散或连续的。
  • 策略(Policy):智能体根据当前状态选择动作的概率分布。
  • 状态转移概率(State Transition Probability):在给定状态和动作的情况下,环境转移到下一个状态的概率。
  • 即时奖励(Immediate Reward):智能体在执行动作后,环境反馈的奖励。

学习分享

需要更多AI大模型资源的可以

在这里插入图片描述

3、策略(Policy)

策略(Policy)就是智能体如何根据环境状态 𝑠 来决定下一步的动作 𝑎(智能体在特定状态下选择动作的规则或分布)。

  • 确定性策略(Deterministic Policy) 直接指定智能体应该采取的具体动作
  • 随机性策略(Stochastic Policy) 则考虑了动作的概率分布,增加了对不同动作的探索。

上述概念可详细参照:【深度学习】强化学习(一)强化学习定义

4、马尔可夫决策过程

为了简化描述,将智能体与环境的交互看作离散的时间序列。智能体从感知到的初始环境

s0

开始,然后决定做一个相应的动作

a0

,环境相应地发生改变到新的状态

s1

,并反馈给智能体一个即时奖励

r1

,然后智能体又根据状态

s1

做一个动作

a1

,环境相应改变为

s2

,并反馈奖励

r2

。这样的交互可以一直进行下去:

s0,a0,s1,r1,a1,…,st−1,rt−1,at−1,st,rt,…,

其中

rt=r(st−1,at−1,st)

是第

t

时刻的即时奖励。这个交互过程可以被视为一个马尔可夫决策过程(Markov Decision Process,MDP)

img

1. 基本元素
  • 状态(

st

):

  • 表示智能体与环境交互中的当前情况或环境状态。
  • 在时间步𝑡时,智能体和环境的状态为

st

  • 动作 (

at

):

  • 表示智能体在给定状态

st

下采取的动作。

  • 在时间步𝑡时,智能体选择执行动作

at

  • 奖励 (

rt

):

  • 表示在智能体采取动作

at

后,环境反馈给智能体的即时奖励。

  • 在时间步𝑡时,智能体获得奖励

rt

2. 交互过程的表示
  • 智能体与环境的交互过程可以用离散时间序列表示:

s0,a0,s1,r1,a1,…,st−1,rt−1,at−1,st,rt,…,

  • 在每个时间步,智能体根据当前状态选择一个动作,环境根据智能体的动作和当前状态发生转移,并反馈即时奖励。
  • 这种时间序列描述强调了智能体和环境之间的交互,以及在时间步𝑡时智能体和环境的状态、动作和奖励。这符合马尔可夫决策过程的基本定义,其中马尔可夫性质要求当前状态包含了所有与未来预测相关的信息。
3. 马尔可夫过程(Markov Process)
  • 定义: 马尔可夫过程是一组具有马尔可夫性质的随机变量序列

s0,s1,…,st∈S

,其中

S

是状态空间。

  • 马尔可夫性质: 当前状态

st

对未来的预测只依赖于当前状态,而不依赖于过去的状态序列

st−1,st−2,…,s0

),即

p(st+1|st,…,s0)=p(st+1|st)

  • 状态转移概率

p(st+1|st)

表示在给定当前状态

st

的条件下,下一个时刻的状态为

st+1

的概率,满足

∑St+1∈Sp(st+1|st)=1

4. 马尔可夫决策过程(MDP)
  • 加入动作: MDP 在马尔可夫过程的基础上引入了动作变量

at

,表示智能体在状态

st

时选择的动作。

  • 状态转移概率的扩展: 在MDP中,下一个时刻的状态

st+1

不仅依赖于当前状态

st

还依赖于智能体选择的动作

at

p(st+1|st,at,…,s0,a0)=p(st+1|st,at)

  • 马尔可夫决策过程的特点: 在MDP中,智能体的决策不仅受当前状态的影响,还受到智能体选择的动作的影响,从而更加适应需要制定决策的场景。

img

5. 轨迹的概率计算
  • 轨迹表示: 给定策略

π(a|s)

,MDP的一个轨迹

τ

表示智能体与环境交互的一系列状态、动作和奖励的序列:

τ=s0,a0,s1,r1,a1,…,sT−1,rT−1,aT−1,sT,rT,…,

  • 概率计算公式:

p(τ)=p(s0,a0,s1,r1,…)

p(τ)=p(s0)T−1∏t=0π(at|st)p(st+1|st,at)

  • 轨迹的联合概率:
    • 通过对轨迹中每个时刻的概率连乘,得到整个轨迹的联合概率。
6. 给西瓜浇水问题的马尔可夫决策过程

img

在给西瓜浇水的马尔可夫决策过程中,只有四个状态(健康、缺水、溢水、凋亡)和两个动作(浇水、不浇水),在每一 步转移后,若状态是保持瓜苗健康则获得奖赏1 ,瓜苗缺水或溢水奖赏为- 1 , 这时通过浇水或不浇水可以恢复健康状态,当瓜苗凋亡时奖赏是最小值-100 且无法恢复。图中箭头表示状态转移,箭头旁的

a,p,r

分别表示导致状态转移的动作、转移概率以及返回的奖赏.容易看出,最优策略在“健康”状态选择动作 “浇水”、在 “溢水”状态选择动作“不浇水”、在 “缺水”状态选择动作 “浇水”、在 “凋亡”状态可选择任意动作。

学习分享

需要更多AI大模型资源的可以

在这里插入图片描述

  • 31
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值