如何提高深度学习中数据运行的稳定性

在深度学习中,模型的训练通常会受到随机性因素的影响,如参数初始化、数据加载顺序等。这会导致每次训练得到的结果有所不同。要减少这种不稳定性,可以采取以下措施:

1.固定随机种子

通过设置随机种子,可以使得每次训练过程中的随机性操作(如参数初始化、数据加载顺序等)保持一致,从而提高结果的稳定性。

import torch
import numpy as np
import random

def set_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

set_seed(42)

2.增加模型训练的次数

通过增加训练轮数(epochs),可以让模型在数据上更充分地训练,从而减少不稳定性。此时要修改的参数为num_epochs

# 训练模型
num_epochs = 50
for epoch in range(num_epochs):
    model.train()
    for geno, pheno in train_loader:
        optimizer.zero_grad()
        outputs = model(geno)
        loss = criterion(outputs.squeeze(), pheno)
        loss.backward()
        optimizer.step()

    print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

3.使用更大的批量大小

此时要进行修改的是batch_size的大小,指的是一次性选取的样本数量为多少

# 创建数据加载器
train_dataset = GenoPhenoDataset(X_train, y_train)
test_dataset = GenoPhenoDataset(X_test, y_test)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)

4.使用学习率调度器

scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True)

5.K折交叉验证

通过 K 折交叉验证,可以更全面地评估模型的性能,从而减少由于训练数据集划分带来的不稳定性。

6.早停法

使用早停法在验证集上监控性能,当性能不再提升时提前停止训练,避免过拟合。

early_stopping = EarlyStopping(patience=10, verbose=True)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值