强化学习: 贝尔曼方程与马尔可夫决策过程
一、简介
贝尔曼方程和马尔可夫决策过程是强化学习非常重要的两个概念,大部分强化学习算法都是围绕这两个概念进行操作。尤其是贝尔曼方程,对以后理解蒙特卡洛搜索、时序差分算法以及深度强化学习算法都至关重要。这篇文章主要介绍贝尔曼方程。
常用的资料:
《Reinforcement Learning: An Introduction》 author: Richard S.Sutton and Andrew G.Barto
UCL Course: https://www.davidsilver.uk/teaching/
博客园:https://www.cnblogs.com/pinard/
二、马尔可夫决策过程
熟悉自然语言处理的同学一定对马尔可夫(Markov)并不陌生,隐马尔科夫模型,条件随机场中都有利用到马尔可夫性质。马尔可夫描述这样一个随机过程:如果一个系统有NNN个状态S1,S2,...,SNS_1,S_2,...,S_NS1,S2,...,SN,随着时间的推移,该系统从某一个状态转移到另一个状态。如果用qtq_tqt表示系统在时间ttt的状态变量,那么ttt时刻的状态取值为SjS_jSj的概率取决于前t−1t-1t−1个时刻,该概率为:
p(qt=Sj∣qt−1=Si,qt−2=sk,...)(1)\tag{1}
p(q_t=S_j|q_{t-1}=S_i,q_{t-2}=s_k,...)
p(qt=Sj∣qt−1=Si,qt−2=sk,...)(1)
意思很好理解,就是某一时刻状态的取值,取决于前面所有时刻的状态,画图表示为:
那么这个模型猛一看并没有什么问题,我此时此刻的状态是由前面所有时刻的状态所决定的。但是它的致命缺点则是,过于复杂。因为在计算某一个状态的概率时,你需要利用前面所有的状态值,那么多的参数模型肯定复杂。所以马尔可夫模型进行了两个重要的简化:1. 一阶独立性假设。任意一个时刻的状态仅仅依赖于前一个时刻的状态。这个很容易理解,用数学表示为:
p(qt=Sj∣qt−1=Si,qt−2=sk,...)=p(qt=Sj∣qt−1=Si)(2)
p(q_t=S_j|q_{t-1}=S_i,q_{t-2}=s_k,...) = p(q_t=S_j|q_{t-1}=S_i)\tag{2}
p(qt=Sj∣qt−1=Si,qt−2=sk,...)=p(qt=Sj∣qt−1=Si)(2)
画图表示为:
这样一看,模型就简化很多了,虽然可能会带来模型上的误差,但相比较于难以计算的复杂度,这点误差还是可以接受的。2. 时间独立性假设。可以设想这么一个情况,如果时刻jjj和时刻j+1j+1j+1的状态是aaa和bbb,在iii和i+1i+1i+1时刻的状态也分别是aaa和bbb,那么时间独立性可以表示为:
p1=p(qj+1=b∣qj=a)p2=p(qi+1=b∣qi=a)p1=p2(3)
\begin{aligned}
p_1&=p(q_{j+1}=b|q_j=a)\\
p_2&=p(q_{i+1}=b|q_i=a)\\\tag{3}
p_1&=p_2
\end{aligned}
p1p2p1=p(qj+1=b∣qj=a)=p(qi+1=b∣qi=a)=p2(3)
也就是只要前一个时刻的状态是aaa,那么后一个时刻的状态是bbb的概率是固定的,此概率和aaa所在的时刻(iii或者jjj)无关。那么既然和时间是无关的,那么由状态aaa转移到状态bbb的概率就可以写作:
p(b∣a)(4)
p(b|a)\tag{4}
p(b∣a)(4)
从而,我们得到马尔可夫模型,一阶独立性假设和时间独立性假设。
三、强化学习中的马尔可夫决策过程
回想一下强化学习中的一个重要概念,概率转化模型,也就是pss,ap^a_{ss^,}pss,a,代表的是,在状态sss下,采取动作aaa后,转移到状态s,s^,s,的概率。此变量的定义其实已经暗含了马尔科夫假设:状态s,s^,s,发生的概率仅仅和上一时刻的状态sss相关。当然,还和动作aaa相关,但这个动作aaa可以看作是环境的输入(想一想条件随机场)。因此,可以用数学表达为:
pss,a=p(s,∣s,a)(5)
p_{ss^,}^a=p(s^,|s,a)\tag{5}
pss,a=p(s,∣s,a)(5)
这个假设极大的简化了强化学习的状态转移矩阵。此外,除了马尔可夫假设之外,还有一个比较重要的假设,就是对策略π\piπ的假设,回想一下策略π\piπ的定义,在状态sss下,agent采取动作aaa的概率,表达为概率形式:
π(a∣s)=p(a∣s)
\begin{aligned}
\pi(a|s)=p(a|s)
\end{aligned}
π(a∣s)=p(a∣s)
其实也隐含了一个假设,那就是agent的动作aaa只和状态sss有关。
四、贝尔曼方程
如果要说强化学习中最重要的一个公式,那么非贝尔曼方程莫属了,本文将以图表和公式的形式来解释贝尔曼方程,争取能以一种接近人的思维去解释贝尔曼方程。
首先引入一个变量,叫做动作价值函数,qπ(s,a)q_{\pi}(s,a)qπ(s,a),它的含义是在**状态sss下,采取动作aaa后所期望获得的总回报。**对比一下价值函数vπ(s)v_\pi (s)vπ(s)的定义,状态s下,期望获得的总回报,显然,二者的区别在于动作价值函数在状态sss下多了一个动作aaa的限制。言语无法解释,直接上图:
假设agent初始状态为AAA,在t=1t=1t=1时刻,采取了动作a11a_{11}a11(其他可能的动作a12,a13a_{12},a_{13}a12,a13),那么之后可能发生的状态都如红框中所示,而动作价值函数qπ(s,a)q_\pi(s,a)qπ(s,a)代表的就是红框中所能获得回报期望,也就是状态AAA到达所有红框中叶子节点(终点)的回报期望值。从上节的定义中可知,价值函数vπ(s)v_\pi (s)vπ(s)代表从状态sss到达所有叶子节点的总回报的期望,因此可以看出来,**动作价值函数只是价值函数的一部分。**那么怎么由动作价值函数去获得价值函数呢?看下图:
如图所示,我们可以把整个状态树可以分成三个分支,分别代表执行a11a_{11}a11产生的动作价值函数qπ(A,a11)q_\pi(A,a_{11})qπ(A,a11),执行a12a_{12}a12产生的动作价值函数qπ(A,a12)q_\pi(A,a_{12})qπ(A,a12),和执行a13a_{13}a13产生的动作价值函数qπ(A,a13)q_\pi(A,a_{13})qπ(A,a13)。而价值函数vπ(A)v_\pi(A)vπ(A)由于代表的是AAA到达所有叶子节点的回报的期望,因此,将这三个分支相加不就是总的价值函数了吗?由此可以得到下式
vπ(s)=π(a11∣A)qπ(A,a11)+π(a12∣A)qπ(A,a12)+π(a13∣A)qπ(A,a13)(6)
v_\pi(s)=\pi(a_{11}|A) q_\pi(A,a_{11})+\pi(a_{12}|A)q_\pi(A,a_{12})+\pi(a_{13}|A)q_\pi(A,a_{13})\tag{6}
vπ(s)=π(a11∣A)qπ(A,a11)+π(a12∣A)qπ(A,a12)+π(a13∣A)qπ(A,a13)(6)
注意由于是求期望,我们还要乘以各自分支发生的概率π(a∣s)\pi(a|s)π(a∣s)。从而,我们得到了第一个重要的公式,也就是关联动作价值函数和价值函数的等式:
vπ(s)=∑aπ(a∣s)qπ(s,a)(7)
v_\pi(s)=\sum_{a}\pi(a|s)q_\pi(s,a)\tag{7}
vπ(s)=a∑π(a∣s)qπ(s,a)(7)
它代表的是,一个状态的价值函数,由此状态可能发生的动作价值函数构成,也就是一棵树可以由若干个分支构成,每一个分支是由一个动作产生,这个动作的概率由π\piπ决定,此分支的动作价值函数记为qπ(s,a)q_\pi(s,a)qπ(s,a)。
-
贝尔曼方程
首先回想一下三个重要的等式,分别代表价值函数定义,动作价值函数定义,价值函数和动作价值函数的关系:
vπ(s)=Eπ(Gt∣St=s)=Eπ(Rt+1+γRt+2+γ2Rt+3+...∣St=s)pπ(s,a)=Eπ(Gt∣St=s,At=a)=Eπ(Rt+1+γRt+2+γ2Rt+3+...∣St=s,At=a)vπ(s)=∑aπ(a∣s)pπ(s,a)(8) \begin{aligned} v_\pi(s)&=E_\pi(G_t|S_t=s)=E_\pi(R_{t+1}+\gamma R_{t+2}+\gamma^2R_{t+3}+...|S_t=s)\\\\ p_\pi(s,a)&=E_\pi(G_t|S_t=s,A_t=a)=E_\pi(R_{t+1}+\gamma R_{t+2}+\gamma^2R_{t+3}+...|S_t=s,A_t=a)\\\\\tag{8} v_\pi(s)&=\sum_a\pi(a|s)p_\pi(s,a) \end{aligned} vπ(s)pπ(s,a)vπ(s)=Eπ(Gt∣St=s)=Eπ(Rt+1+γRt+2+γ2Rt+3+...∣St=s)=Eπ(Gt∣St=s,At=a)=Eπ(Rt+1+γRt+2+γ2Rt+3+...∣St=s,At=a)=a∑π(a∣s)pπ(s,a)(8)
这三个公式非常重要,在后面的学习中会经常用到,因此一定要理解他们的含义,以及他们在状态树中代表着什么。下面重点讲解一下贝尔曼方程,首先是纯数学推导:
vπ(s)=Eπ(Rt+1+γRt+2+γ2Rt+3+...∣St=s)=Eπ(Rt+1+γ(Rt+2+γRt+3+γ2Rt+4+...)∣St=s)=Eπ(Rt+1+γGt+1∣St=s)=Eπ(Rt+1+γvπ(St+1)∣St=s)(9) \begin{aligned} v_\pi(s)&=E_\pi(R_{t+1}+\gamma R_{t+2}+\gamma^2R_{t+3}+...|S_t=s)\\ &=E_\pi(R_{t+1}+\gamma(R_{t+2}+\gamma R_{t+3}+\gamma^2R_{t+4}+...)|S_t=s)\\\tag{9} &=E_\pi(R_{t+1}+\gamma G_{t+1}|S_t=s)\\ &=E_\pi(R_{t+1}+\gamma v_\pi(S_{t+1})|S_t=s) \end{aligned} vπ(s)=Eπ(Rt+1+γRt+2+γ2Rt+3+...∣St=s)=Eπ(Rt+1+γ(Rt+2+γRt+3+γ2Rt+4+...)∣St=s)=Eπ(Rt+1+γGt+1∣St=s)=Eπ(Rt+1+γvπ(St+1)∣St=s)(9)
递推公式还是比较容易理解的,重点在于我们如何去理解这个公式。我们知道,状态sss选择一个动作后,会转移到另一个状态,其实贝尔曼方程描述的就是这样一个过程:状态sss的价值,可以由即时奖励和后续状态获得。
如图所示,状态sss选择一个动作后,可能会转到某一个橘色状态,如果我们知道了橘色状态的价值(橘色节点代表的子树所有叶子节点奖励的总和的期望值),那么我们就不需要知道计算到叶子节点了,因为橘色的状态足以代表叶子节点。从而,贝尔曼方程实际上为我们提供了一个递归的方式求解问题:计算根节点的价值时,不需要遍历整棵树,而只需要利用根节点的子节点价值。这不是递归的典型特点吗?一个大的问题(求解整棵树的价值)可以由子问题去求解(子节点的价值)。同理,我们也可以得到动作价值函数的贝尔曼方程:
qπ(s,a)=Eπ(Rt+1+γQ(St+1,At+1)∣St=s,At=a)(17)
q_\pi(s,a)=E_\pi(R_{t+1}+\gamma Q(S_{t+1}, A_{t+1})|S_t=s, A_t=a)\tag{17}
qπ(s,a)=Eπ(Rt+1+γQ(St+1,At+1)∣St=s,At=a)(17)
贝尔曼方程是我们后续动态规划、时序差分算法的基础,一定要理解其中的含义。
动作价值函数和价值函数的关系
上文我们提到,一个重要的等式可以揭示价值函数动作价值函数的关系:
vπ(s)=∑aπ(a∣s)qπ(s,a)(11)
v_\pi(s)=\sum_{a}\pi(a|s)q_\pi(s,a)\tag{11}
vπ(s)=a∑π(a∣s)qπ(s,a)(11)
那么,动作价值函数是否可以利用价值函数去获得呢?上面说到,每一个动作价值函数其实代表树的一个分支,如下图红框所示:
利用贝尔曼方程的思想,这一分支的价值可以由即时奖励和橘色框状态的价值之和构造,同样是一个动态规划的思想,因此我们有:
qπ(A,a11)=R1+γpABa11vπ(B)+γpACa11vπ(C)(12)
q_\pi(A,a_{11})=R_1+\gamma p_{AB}^{a_{11}}v_\pi(B) + \gamma p_{AC}^{a_{11}}v_\pi(C)\tag{12}
qπ(A,a11)=R1+γpABa11vπ(B)+γpACa11vπ(C)(12)
当然,实际计算的过程,我们应该还要向上述一样,考虑状态转移到其他状态的概率,通用的公式则可以表示为:
qπ(s,a)=Rsa+∑s,pss,avπ(s,)(13)
q_\pi(s,a)=R_s^a+\sum_{s^,}p_{ss^,}^av_\pi(s^,)\tag{13}
qπ(s,a)=Rsa+s,∑pss,avπ(s,)(13)
他代表的含义是:动作价值函数,可以由即时奖励,以及后续状态的价值,加权求和得到,放在树中,其实就是一个动态规划的思想。
那么,既然价值函数可以由动作价值函数得到,动作价值函数也可以由价值函数得到,价值函数能不能通过价值函数得到呢?同理,动作价值函数能不能通过价值函数得到呢?答案当然是可以的:
vπ(s)=∑aπ(a∣s)(Rsa+γ∑s,pss,avπ(s,))(14)
v_\pi(s)=\sum_a\pi(a|s)(R_s^a+\gamma\sum_{s^,}p_{ss^,}^av_\pi(s^,))\tag{14}
vπ(s)=a∑π(a∣s)(Rsa+γs,∑pss,avπ(s,))(14)
这个其实就是我们将公式(13)代入公式(11)得到的,但是我们不要死记硬背,我们需要去理解。同理,我们可以得到:
qπ(s,a)=Rsa+γ∑s,pss,a∑a,π(a,∣s,)qπ(s,,a,)(15)
q_\pi(s,a)=R_s^a+\gamma\sum_{s^,}p_{ss^,}^a\sum_{a^,}\pi(a^,|s^,)q_\pi(s^,,a^,)\tag{15}
qπ(s,a)=Rsa+γs,∑pss,aa,∑π(a,∣s,)qπ(s,,a,)(15)
是将(11)式代入(13)式得到的结果。
至此我们得到了几个非常重要的公式:
价值函数定义:vπ(s)=Eπ(Gt∣St=s)=Eπ(Rt+1+γRt+2+γ2Rt+3+...∣St=s)动作价值函数定义:pπ(s,a)=Eπ(Gt∣St=s,At=a)=Eπ(Rt+1+γRt+2+γ2Rt+3+...∣St=s,At=a)价值函数贝尔曼方程:vπ(s)=Eπ(Rt+1+γvπ(St+1)∣St=s)动作价值函数贝尔曼方程:qπ(s,a)=Eπ(Rt+1+γQ(St+1,At+1)∣St=s,At=a)动作价值函数到价值函数:vπ(s)=∑aπ(a∣s)pπ(s,a)价值函数到动作价值函数:qπ(s,a)=Rsa+∑s,pss,avπ(s,)价值函数到价值函数:vπ(s)=∑aπ(a∣s)(Rsa+γ∑s,pss,avπ(s,))动作价值函数到动作价值函数:qπ(s,a)=Rsa+γ∑s,pss,a∑a,π(a,∣s,)qπ(s,,a,)(16)\begin{aligned}
价值函数定义:v_\pi(s)&=E_\pi(G_t|S_t=s)=E_\pi(R_{t+1}+\gamma R_{t+2}+\gamma^2R_{t+3}+...|S_t=s)\\\\
动作价值函数定义:p_\pi(s,a)&=E_\pi(G_t|S_t=s,A_t=a)=E_\pi(R_{t+1}+\gamma R_{t+2}+\gamma^2R_{t+3}+...|S_t=s,A_t=a)\\\\
价值函数贝尔曼方程:v_\pi(s)&=E_\pi(R_{t+1}+\gamma v_\pi(S_{t+1})|S_t=s)\\\\
动作价值函数贝尔曼方程:q_\pi(s,a)&=E_\pi(R_{t+1}+\gamma Q(S_{t+1}, A_{t+1})|S_t=s, A_t=a)\\\\\tag{16}
动作价值函数到价值函数:v_\pi(s)&=\sum_a\pi(a|s)p_\pi(s,a)\\\\
价值函数到动作价值函数:q_\pi(s,a)&=R_s^a+\sum_{s^,}p_{ss^,}^av_\pi(s^,)\\\\
价值函数到价值函数:v_\pi(s)&=\sum_a\pi(a|s)(R_s^a+\gamma\sum_{s^,}p_{ss^,}^av_\pi(s^,))\\\\
动作价值函数到动作价值函数:q_\pi(s,a)&=R_s^a+\gamma\sum_{s^,}p_{ss^,}^a\sum_{a^,}\pi(a^,|s^,)q_\pi(s^,,a^,)
\end{aligned}
价值函数定义:vπ(s)动作价值函数定义:pπ(s,a)价值函数贝尔曼方程:vπ(s)动作价值函数贝尔曼方程:qπ(s,a)动作价值函数到价值函数:vπ(s)价值函数到动作价值函数:qπ(s,a)价值函数到价值函数:vπ(s)动作价值函数到动作价值函数:qπ(s,a)=Eπ(Gt∣St=s)=Eπ(Rt+1+γRt+2+γ2Rt+3+...∣St=s)=Eπ(Gt∣St=s,At=a)=Eπ(Rt+1+γRt+2+γ2Rt+3+...∣St=s,At=a)=Eπ(Rt+1+γvπ(St+1)∣St=s)=Eπ(Rt+1+γQ(St+1,At+1)∣St=s,At=a)=a∑π(a∣s)pπ(s,a)=Rsa+s,∑pss,avπ(s,)=a∑π(a∣s)(Rsa+γs,∑pss,avπ(s,))=Rsa+γs,∑pss,aa,∑π(a,∣s,)qπ(s,,a,)(16)
这些公式,我们都可以找到他们的物理含义,都可以找到他们在状态树上的定义,我们一定要理解着去记忆,明白他们数学推导后的物理含义。