强化学习: 贝尔曼方程与马尔可夫决策过程

强化学习: 贝尔曼方程与马尔可夫决策过程

一、简介

贝尔曼方程和马尔可夫决策过程是强化学习非常重要的两个概念,大部分强化学习算法都是围绕这两个概念进行操作。尤其是贝尔曼方程,对以后理解蒙特卡洛搜索、时序差分算法以及深度强化学习算法都至关重要。这篇文章主要介绍贝尔曼方程。

常用的资料:

《Reinforcement Learning: An Introduction》 author: Richard S.Sutton and Andrew G.Barto

UCL Course: https://www.davidsilver.uk/teaching/

博客园:https://www.cnblogs.com/pinard/


二、马尔可夫决策过程

熟悉自然语言处理的同学一定对马尔可夫(Markov)并不陌生,隐马尔科夫模型,条件随机场中都有利用到马尔可夫性质。马尔可夫描述这样一个随机过程:如果一个系统有 N N N个状态 S 1 , S 2 , . . . , S N S_1,S_2,...,S_N S1,S2,...,SN,随着时间的推移,该系统从某一个状态转移到另一个状态。如果用 q t q_t qt表示系统在时间 t t t的状态变量,那么 t t t时刻的状态取值为 S j S_j Sj的概率取决于前 t − 1 t-1 t1个时刻,该概率为:
p ( q t = S j ∣ q t − 1 = S i , q t − 2 = s k , . . . ) (1) \tag{1} p(q_t=S_j|q_{t-1}=S_i,q_{t-2}=s_k,...) p(qt=Sjqt1=Si,qt2=sk,...)(1)
意思很好理解,就是某一时刻状态的取值,取决于前面所有时刻的状态,画图表示为:
在这里插入图片描述

那么这个模型猛一看并没有什么问题,我此时此刻的状态是由前面所有时刻的状态所决定的。但是它的致命缺点则是,过于复杂。因为在计算某一个状态的概率时,你需要利用前面所有的状态值,那么多的参数模型肯定复杂。所以马尔可夫模型进行了两个重要的简化:1. 一阶独立性假设。任意一个时刻的状态仅仅依赖于前一个时刻的状态。这个很容易理解,用数学表示为:
p ( q t = S j ∣ q t − 1 = S i , q t − 2 = s k , . . . ) = p ( q t = S j ∣ q t − 1 = S i ) (2) p(q_t=S_j|q_{t-1}=S_i,q_{t-2}=s_k,...) = p(q_t=S_j|q_{t-1}=S_i)\tag{2} p(qt=Sjqt1=Si,qt2=sk,...)=p(qt=Sjqt1=Si)(2)
画图表示为:

在这里插入图片描述

这样一看,模型就简化很多了,虽然可能会带来模型上的误差,但相比较于难以计算的复杂度,这点误差还是可以接受的。2. 时间独立性假设。可以设想这么一个情况,如果时刻 j j j和时刻 j + 1 j+1 j+1的状态是 a a a b b b,在 i i i i + 1 i+1 i+1时刻的状态也分别是 a a a b b b,那么时间独立性可以表示为:
p 1 = p ( q j + 1 = b ∣ q j = a ) p 2 = p ( q i + 1 = b ∣ q i = a ) p 1 = p 2 (3) \begin{aligned} p_1&=p(q_{j+1}=b|q_j=a)\\ p_2&=p(q_{i+1}=b|q_i=a)\\\tag{3} p_1&=p_2 \end{aligned} p1p2p1=p(qj+1=bqj=a)=p(qi+1=bqi=a)=p2(3)
也就是只要前一个时刻的状态是 a a a,那么后一个时刻的状态是 b b b的概率是固定的,此概率和 a a a所在的时刻( i i i或者 j j j)无关。那么既然和时间是无关的,那么由状态 a a a转移到状态 b b b的概率就可以写作:
p ( b ∣ a ) (4) p(b|a)\tag{4} p(ba)(4)
从而,我们得到马尔可夫模型,一阶独立性假设和时间独立性假设。


三、强化学习中的马尔可夫决策过程

回想一下强化学习中的一个重要概念,概率转化模型,也就是 p s s , a p^a_{ss^,} pss,a,代表的是,在状态 s s s下,采取动作 a a a后,转移到状态 s , s^, s,的概率。此变量的定义其实已经暗含了马尔科夫假设:状态 s , s^, s,发生的概率仅仅和上一时刻的状态 s s s相关。当然,还和动作 a a a相关,但这个动作 a a a可以看作是环境的输入(想一想条件随机场)。因此,可以用数学表达为:
p s s , a = p ( s , ∣ s , a ) (5) p_{ss^,}^a=p(s^,|s,a)\tag{5} pss,a=p(s,s,a)(5)
这个假设极大的简化了强化学习的状态转移矩阵。此外,除了马尔可夫假设之外,还有一个比较重要的假设,就是对策略 π \pi π的假设,回想一下策略 π \pi π的定义,在状态 s s s下,agent采取动作 a a a的概率,表达为概率形式:
π ( a ∣ s ) = p ( a ∣ s ) \begin{aligned} \pi(a|s)=p(a|s) \end{aligned} π(as)=p(as)
其实也隐含了一个假设,那就是agent的动作 a a a只和状态 s s s有关。


四、贝尔曼方程

如果要说强化学习中最重要的一个公式,那么非贝尔曼方程莫属了,本文将以图表和公式的形式来解释贝尔曼方程,争取能以一种接近人的思维去解释贝尔曼方程。

首先引入一个变量,叫做动作价值函数, q π ( s , a ) q_{\pi}(s,a) qπ(s,a),它的含义是在**状态 s s s下,采取动作 a a a后所期望获得的总回报。**对比一下价值函数 v π ( s ) v_\pi (s) vπ(s)的定义,状态s下,期望获得的总回报,显然,二者的区别在于动作价值函数在状态 s s s下多了一个动作 a a a的限制。言语无法解释,直接上图:

在这里插入图片描述

假设agent初始状态为 A A A,在 t = 1 t=1 t=1时刻,采取了动作 a 11 a_{11} a11(其他可能的动作 a 12 , a 13 a_{12},a_{13} a12,a13),那么之后可能发生的状态都如红框中所示,而动作价值函数 q π ( s , a ) q_\pi(s,a) qπ(s,a)代表的就是红框中所能获得回报期望,也就是状态 A A A到达所有红框中叶子节点(终点)的回报期望值。从上节的定义中可知,价值函数 v π ( s ) v_\pi (s) vπ(s)代表从状态 s s s到达所有叶子节点的总回报的期望,因此可以看出来,**动作价值函数只是价值函数的一部分。**那么怎么由动作价值函数去获得价值函数呢?看下图:
在这里插入图片描述

如图所示,我们可以把整个状态树可以分成三个分支,分别代表执行 a 11 a_{11} a11产生的动作价值函数 q π ( A , a 11 ) q_\pi(A,a_{11}) qπ(A,a11),执行 a 12 a_{12} a12产生的动作价值函数 q π ( A , a 12 ) q_\pi(A,a_{12}) qπ(A,a12),和执行 a 13 a_{13} a13产生的动作价值函数 q π ( A , a 13 ) q_\pi(A,a_{13}) qπ(A,a13)。而价值函数 v π ( A ) v_\pi(A) vπ(A)由于代表的是 A A A到达所有叶子节点的回报的期望,因此,将这三个分支相加不就是总的价值函数了吗?由此可以得到下式
v π ( s ) = π ( a 11 ∣ A ) q π ( A , a 11 ) + π ( a 12 ∣ A ) q π ( A , a 12 ) + π ( a 13 ∣ A ) q π ( A , a 13 ) (6) v_\pi(s)=\pi(a_{11}|A) q_\pi(A,a_{11})+\pi(a_{12}|A)q_\pi(A,a_{12})+\pi(a_{13}|A)q_\pi(A,a_{13})\tag{6} vπ(s)=π(a11A)qπ(A,a11)+π(a12A)qπ(A,a12)+π(a13A)qπ(A,a13)(6)
注意由于是求期望,我们还要乘以各自分支发生的概率 π ( a ∣ s ) \pi(a|s) π(as)。从而,我们得到了第一个重要的公式,也就是关联动作价值函数和价值函数的等式
v π ( s ) = ∑ a π ( a ∣ s ) q π ( s , a ) (7) v_\pi(s)=\sum_{a}\pi(a|s)q_\pi(s,a)\tag{7} vπ(s)=aπ(as)qπ(s,a)(7)
它代表的是,一个状态的价值函数,由此状态可能发生的动作价值函数构成,也就是一棵树可以由若干个分支构成,每一个分支是由一个动作产生,这个动作的概率由 π \pi π决定,此分支的动作价值函数记为 q π ( s , a ) q_\pi(s,a) qπ(s,a)


  • 贝尔曼方程

    首先回想一下三个重要的等式,分别代表价值函数定义,动作价值函数定义,价值函数和动作价值函数的关系:
    v π ( s ) = E π ( G t ∣ S t = s ) = E π ( R t + 1 + γ R t + 2 + γ 2 R t + 3 + . . . ∣ S t = s ) p π ( s , a ) = E π ( G t ∣ S t = s , A t = a ) = E π ( R t + 1 + γ R t + 2 + γ 2 R t + 3 + . . . ∣ S t = s , A t = a ) v π ( s ) = ∑ a π ( a ∣ s ) p π ( s , a ) (8) \begin{aligned} v_\pi(s)&=E_\pi(G_t|S_t=s)=E_\pi(R_{t+1}+\gamma R_{t+2}+\gamma^2R_{t+3}+...|S_t=s)\\\\ p_\pi(s,a)&=E_\pi(G_t|S_t=s,A_t=a)=E_\pi(R_{t+1}+\gamma R_{t+2}+\gamma^2R_{t+3}+...|S_t=s,A_t=a)\\\\\tag{8} v_\pi(s)&=\sum_a\pi(a|s)p_\pi(s,a) \end{aligned} vπ(s)pπ(s,a)vπ(s)=Eπ(GtSt=s)=Eπ(Rt+1+γRt+2+γ2Rt+3+...St=s)=Eπ(GtSt=s,At=a)=Eπ(Rt+1+γRt+2+γ2Rt+3+...St=s,At=a)=aπ(as)pπ(s,a)(8)
    这三个公式非常重要,在后面的学习中会经常用到,因此一定要理解他们的含义,以及他们在状态树中代表着什么。下面重点讲解一下贝尔曼方程,首先是纯数学推导:
    v π ( s ) = E π ( R t + 1 + γ R t + 2 + γ 2 R t + 3 + . . . ∣ S t = s ) = E π ( R t + 1 + γ ( R t + 2 + γ R t + 3 + γ 2 R t + 4 + . . . ) ∣ S t = s ) = E π ( R t + 1 + γ G t + 1 ∣ S t = s ) = E π ( R t + 1 + γ v π ( S t + 1 ) ∣ S t = s ) (9) \begin{aligned} v_\pi(s)&=E_\pi(R_{t+1}+\gamma R_{t+2}+\gamma^2R_{t+3}+...|S_t=s)\\ &=E_\pi(R_{t+1}+\gamma(R_{t+2}+\gamma R_{t+3}+\gamma^2R_{t+4}+...)|S_t=s)\\\tag{9} &=E_\pi(R_{t+1}+\gamma G_{t+1}|S_t=s)\\ &=E_\pi(R_{t+1}+\gamma v_\pi(S_{t+1})|S_t=s) \end{aligned} vπ(s)=Eπ(Rt+1+γRt+2+γ2Rt+3+...St=s)=Eπ(Rt+1+γ(Rt+2+γRt+3+γ2Rt+4+...)St=s)=Eπ(Rt+1+γGt+1St=s)=Eπ(Rt+1+γvπ(St+1)St=s)(9)
    递推公式还是比较容易理解的,重点在于我们如何去理解这个公式。我们知道,状态 s s s选择一个动作后,会转移到另一个状态,其实贝尔曼方程描述的就是这样一个过程:状态 s s s的价值,可以由即时奖励和后续状态获得。

在这里插入图片描述

如图所示,状态 s s s选择一个动作后,可能会转到某一个橘色状态,如果我们知道了橘色状态的价值(橘色节点代表的子树所有叶子节点奖励的总和的期望值),那么我们就不需要知道计算到叶子节点了,因为橘色的状态足以代表叶子节点。从而,贝尔曼方程实际上为我们提供了一个递归的方式求解问题:计算根节点的价值时,不需要遍历整棵树,而只需要利用根节点的子节点价值。这不是递归的典型特点吗?一个大的问题(求解整棵树的价值)可以由子问题去求解(子节点的价值)。同理,我们也可以得到动作价值函数的贝尔曼方程:
q π ( s , a ) = E π ( R t + 1 + γ Q ( S t + 1 , A t + 1 ) ∣ S t = s , A t = a ) (17) q_\pi(s,a)=E_\pi(R_{t+1}+\gamma Q(S_{t+1}, A_{t+1})|S_t=s, A_t=a)\tag{17} qπ(s,a)=Eπ(Rt+1+γQ(St+1,At+1)St=s,At=a)(17)
贝尔曼方程是我们后续动态规划、时序差分算法的基础,一定要理解其中的含义。


动作价值函数和价值函数的关系

上文我们提到,一个重要的等式可以揭示价值函数动作价值函数的关系:
v π ( s ) = ∑ a π ( a ∣ s ) q π ( s , a ) (11) v_\pi(s)=\sum_{a}\pi(a|s)q_\pi(s,a)\tag{11} vπ(s)=aπ(as)qπ(s,a)(11)
那么,动作价值函数是否可以利用价值函数去获得呢?上面说到,每一个动作价值函数其实代表树的一个分支,如下图红框所示:

在这里插入图片描述

利用贝尔曼方程的思想,这一分支的价值可以由即时奖励和橘色框状态的价值之和构造,同样是一个动态规划的思想,因此我们有:
q π ( A , a 11 ) = R 1 + γ p A B a 11 v π ( B ) + γ p A C a 11 v π ( C ) (12) q_\pi(A,a_{11})=R_1+\gamma p_{AB}^{a_{11}}v_\pi(B) + \gamma p_{AC}^{a_{11}}v_\pi(C)\tag{12} qπ(A,a11)=R1+γpABa11vπ(B)+γpACa11vπ(C)(12)
当然,实际计算的过程,我们应该还要向上述一样,考虑状态转移到其他状态的概率,通用的公式则可以表示为:
q π ( s , a ) = R s a + ∑ s , p s s , a v π ( s , ) (13) q_\pi(s,a)=R_s^a+\sum_{s^,}p_{ss^,}^av_\pi(s^,)\tag{13} qπ(s,a)=Rsa+s,pss,avπ(s,)(13)
他代表的含义是:动作价值函数,可以由即时奖励,以及后续状态的价值,加权求和得到,放在树中,其实就是一个动态规划的思想。

那么,既然价值函数可以由动作价值函数得到,动作价值函数也可以由价值函数得到,价值函数能不能通过价值函数得到呢?同理,动作价值函数能不能通过价值函数得到呢?答案当然是可以的:
v π ( s ) = ∑ a π ( a ∣ s ) ( R s a + γ ∑ s , p s s , a v π ( s , ) ) (14) v_\pi(s)=\sum_a\pi(a|s)(R_s^a+\gamma\sum_{s^,}p_{ss^,}^av_\pi(s^,))\tag{14} vπ(s)=aπ(as)(Rsa+γs,pss,avπ(s,))(14)
这个其实就是我们将公式(13)代入公式(11)得到的,但是我们不要死记硬背,我们需要去理解。同理,我们可以得到:
q π ( s , a ) = R s a + γ ∑ s , p s s , a ∑ a , π ( a , ∣ s , ) q π ( s , , a , ) (15) q_\pi(s,a)=R_s^a+\gamma\sum_{s^,}p_{ss^,}^a\sum_{a^,}\pi(a^,|s^,)q_\pi(s^,,a^,)\tag{15} qπ(s,a)=Rsa+γs,pss,aa,π(a,s,)qπ(s,,a,)(15)
是将(11)式代入(13)式得到的结果。

至此我们得到了几个非常重要的公式:
价 值 函 数 定 义 : v π ( s ) = E π ( G t ∣ S t = s ) = E π ( R t + 1 + γ R t + 2 + γ 2 R t + 3 + . . . ∣ S t = s ) 动 作 价 值 函 数 定 义 : p π ( s , a ) = E π ( G t ∣ S t = s , A t = a ) = E π ( R t + 1 + γ R t + 2 + γ 2 R t + 3 + . . . ∣ S t = s , A t = a ) 价 值 函 数 贝 尔 曼 方 程 : v π ( s ) = E π ( R t + 1 + γ v π ( S t + 1 ) ∣ S t = s ) 动 作 价 值 函 数 贝 尔 曼 方 程 : q π ( s , a ) = E π ( R t + 1 + γ Q ( S t + 1 , A t + 1 ) ∣ S t = s , A t = a ) 动 作 价 值 函 数 到 价 值 函 数 : v π ( s ) = ∑ a π ( a ∣ s ) p π ( s , a ) 价 值 函 数 到 动 作 价 值 函 数 : q π ( s , a ) = R s a + ∑ s , p s s , a v π ( s , ) 价 值 函 数 到 价 值 函 数 : v π ( s ) = ∑ a π ( a ∣ s ) ( R s a + γ ∑ s , p s s , a v π ( s , ) ) 动 作 价 值 函 数 到 动 作 价 值 函 数 : q π ( s , a ) = R s a + γ ∑ s , p s s , a ∑ a , π ( a , ∣ s , ) q π ( s , , a , ) (16) \begin{aligned} 价值函数定义:v_\pi(s)&=E_\pi(G_t|S_t=s)=E_\pi(R_{t+1}+\gamma R_{t+2}+\gamma^2R_{t+3}+...|S_t=s)\\\\ 动作价值函数定义:p_\pi(s,a)&=E_\pi(G_t|S_t=s,A_t=a)=E_\pi(R_{t+1}+\gamma R_{t+2}+\gamma^2R_{t+3}+...|S_t=s,A_t=a)\\\\ 价值函数贝尔曼方程:v_\pi(s)&=E_\pi(R_{t+1}+\gamma v_\pi(S_{t+1})|S_t=s)\\\\ 动作价值函数贝尔曼方程:q_\pi(s,a)&=E_\pi(R_{t+1}+\gamma Q(S_{t+1}, A_{t+1})|S_t=s, A_t=a)\\\\\tag{16} 动作价值函数到价值函数:v_\pi(s)&=\sum_a\pi(a|s)p_\pi(s,a)\\\\ 价值函数到动作价值函数:q_\pi(s,a)&=R_s^a+\sum_{s^,}p_{ss^,}^av_\pi(s^,)\\\\ 价值函数到价值函数:v_\pi(s)&=\sum_a\pi(a|s)(R_s^a+\gamma\sum_{s^,}p_{ss^,}^av_\pi(s^,))\\\\ 动作价值函数到动作价值函数:q_\pi(s,a)&=R_s^a+\gamma\sum_{s^,}p_{ss^,}^a\sum_{a^,}\pi(a^,|s^,)q_\pi(s^,,a^,) \end{aligned} vπ(s)pπ(s,a)vπ(s)qπ(s,a)vπ(s)qπ(s,a)vπ(s)qπ(s,a)=Eπ(GtSt=s)=Eπ(Rt+1+γRt+2+γ2Rt+3+...St=s)=Eπ(GtSt=s,At=a)=Eπ(Rt+1+γRt+2+γ2Rt+3+...St=s,At=a)=Eπ(Rt+1+γvπ(St+1)St=s)=Eπ(Rt+1+γQ(St+1,At+1)St=s,At=a)=aπ(as)pπ(s,a)=Rsa+s,pss,avπ(s,)=aπ(as)(Rsa+γs,pss,avπ(s,))=Rsa+γs,pss,aa,π(a,s,)qπ(s,,a,)(16)

这些公式,我们都可以找到他们的物理含义,都可以找到他们在状态树上的定义,我们一定要理解着去记忆,明白他们数学推导后的物理含义。

  • 35
    点赞
  • 164
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
***P)是在马尔可夫链上发展起来的,包括一个代理人和一个决策过程。在MDP中,代理人通过观察环境的状态并选择行动来与环境交互。每个状态转移和行动都有一个概率分布,用于描述在给定状态下采取某个行动后,代理人可能转移到的下一个状态。代理人的目标是通过选择最优策略来最大化长期累积奖励。 动态规划是解决MDP的一种常用方法。它通过迭代计算每个状态的值函数或策略函数来求解最优策略。在动态规划中,贝尔曼方程是一个重要的方程,用于描述状态值函数和策略函数之间的关系。通过反复迭代贝尔曼方程,可以逐步逼近最优解。 近似动态规划是在大型状态空间中求解MDP的一种有效方法。由于状态空间的大小可能非常大,直接计算值函数或策略函数是不可行的。近似动态规划使用函数近似器(如神经网络)来近似值函数或策略函数。通过训练函数近似器,代理人可以在大型状态空间中找到近似的最优解。这种方法通常结合深度学习技术,如强化学习中的深度Q网络(DQN)。 总结起来,马尔可夫决策过程(MDP)是通过在马尔可夫链上建立的决策过程,在给定状态和行动的情况下,代理人采取行动并与环境交互,目标是通过选择最优策略来最大化累积奖励。动态规划是一种常用的解决MDP的方法,通过迭代计算贝尔曼方程来逐步逼近最优解。近似动态规划是在大型状态空间中求解MDP的有效方法,使用函数近似器来近似值函数或策略函数。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值