全方位解读:Transformer,当今最强大的算法模型之一

今天我们将用一篇文章讲透最强大的算法模型之一——Transformer

首先,咱们先用很直白的语言描述一下:想象你在读一本书,每一页都有很多词。如果你每次只能看到一个词,那么理解整本书会很慢。而Transformer模型就像是你有一个超能力,可以同时看到整页的所有词,还能根据上下文判断哪些词更重要,这样你就能更快更准确地理解书的内容。

老规矩如果大家伙觉得近期文章还不错!欢迎大家点个赞、转个发 前排提示:文末有CSDN独家大模型AGI资料包!

下面,咱们从各方面进行对 Transformer 解释,和大家一起学习一下~

文章目录
    • 基本概念
    • 理论基础
      • 1\. 输入表示(Input Representation)
      • 2\. 注意力机制(Attention Mechanism)
        • 2.1 计算注意力得分
        • 2.2 详细步骤
      • 3\. 多头注意力机制(Multi-head Attention)
        • 3.1 分头计算
        • 3.2 拼接与线性变换
      • 4\. 前馈神经网络(Feed Forward Neural Network)
      • 5\. 位置编码(Positional Encoding)
      • 6\. Transformer整体架构
        • 6.1 编码器层(Encoder Layer)
        • 6.2 解码器层(Decoder Layer)
      • 7\. 总结
    • 完整案例
    • 模型分析
      • Transformer模型的优缺点
        • 优点
        • 缺点
      • 与其他算法的对比
        • RNN(循环神经网络)
        • LSTM(长短期记忆网络)和 GRU(门控循环单元)
        • CNN(卷积神经网络)
      • 何时使用Transformer模型
    • CSDN独家福利

基本概念

Transformer模型是一种用于处理语言数据的神经网络模型,非常适合用于翻译、文本生成和理解等任务。它是在2017年由谷歌的研究团队提出的,已经成为自然语言处理(NLP)领域的主流方法。

下面,从是什么?结构组成、注意力机制、多头注意力先进行解释~

是什么?

Transformer模型是一种深度学习模型,用于理解和生成自然语言。简单来说,它是一种能读懂人类语言并生成类似语言的计算机模型。

结构组成

Transformer模型主要由两个部分组成:编码器(Encoder)和解码器(Decoder)。编码器负责读取和理解输入文本,解码器负责生成输出文本。它们是通过一种叫做“注意力机制”(Attention Mechanism)来相互作用的。

注意力机制

注意力机制是Transformer模型的核心。它的作用是让模型能够“关注”输入数据的不同部分,而不是一次只处理一个词。比如,当模型在处理一句话时,它可以同时考虑句子中所有的词,而不是一个一个地看过去。这种机制使得模型在处理长句子时更加有效。

多头注意力 Transformer模型还有一个重要特性叫做“多头注意力”(Multi-head Attention)。这意味着模型可以在不同的“头”上进行多个注意力操作,从而捕捉到更多的信息。这就像同时有多个视角在看同一个东西,每个视角都能看到一些不同的细节。

那么,为什么 Transformer如此重要?!

首先是,高效处理长文本

传统的RNN(循环神经网络)在处理长文本时效率较低,而Transformer模型通过并行处理和注意力机制,可以更高效地处理长文本。

其次,更好的表现

Transformer模型在很多NLP任务中表现优异,比如机器翻译、文本摘要和问答系统等。它不仅速度快,而且准确率高。

总的来说,Transformer模型通过其独特的注意力机制和结构设计,使得它在处理自然语言时比传统方法更加高效和准确,是现代NLP任务中非常非常重要的一项技术。

理论基础

为了便于理解,下面我们会分为以下几个部分进行讲解:

  • 输入表示

  • 注意力机制

  • 多头注意力

  • 前馈神经网络

  • 位置编码

  • 整个Transformer整体架构

1. 输入表示(Input Representation)

输入文本首先需要转换为向量形式。通常,我们使用词嵌入(Word Embeddings)来表示每个单词。假设输入句子长度为 ,词嵌入的维度为 ,则输入可以表示为一个 的矩阵 。

2. 注意力机制(Attention Mechanism)

注意力机制是Transformer的核心。给定输入序列的表示 ,我们计算三个矩阵:查询矩阵(Query)、键矩阵(Key)和值矩阵(Value)。

  • 查询矩阵

  • 键矩阵

  • 值矩阵

其中, 、 和 是可训练的权重矩阵。

2.1 计算注意力得分

注意力得分通过点积计算得到:

这里, 是键矩阵 的维度。点积得到的结果除以 是为了防止数值过大引起的梯度消失问题。

2.2 详细步骤
  1. 计算点积

  2. 除以

  3. 应用 softmax: ,得到注意力权重矩阵

  4. 加权求和

3. 多头注意力机制(Multi-head Attention)

多头注意力机制是将输入分成多个头,每个头进行独立的注意力计算,然后将结果拼接起来并投影到输出空间。

3.1 分头计算

假设有 个头,每个头的维度为 :

每个头独立计算注意力:

3.2 拼接与线性变换

将所有头的输出拼接起来:

其中 是可训练的投影矩阵。

4. 前馈神经网络(Feed Forward Neural Network)

每个注意力头的输出会通过一个前馈神经网络进行进一步处理。前馈神经网络由两个线性变换和一个ReLU激活函数组成:

其中, 和 是权重矩阵, 和 是偏置。

5. 位置编码(Positional Encoding)

由于Transformer没有使用传统的RNN或CNN架构,因此需要添加位置编码来让模型获取序列信息。位置编码可以通过正弦和余弦函数生成:

对于输入位置 和维度 :

将位置编码添加到输入嵌入向量中:

6. Transformer整体架构

一个完整的Transformer模型由多个编码器层和解码器层组成。

6.1 编码器层(Encoder Layer)

每个编码器层包括以下几个步骤:

  1. 多头注意力机制:

  2. 残差连接和层归一化:

  3. 前馈神经网络:

  4. 残差连接和层归一化:

6.2 解码器层(Decoder Layer)

每个解码器层与编码器层类似,但多了一个编码器-解码器注意力层:

  1. 自注意力机制(Masked MultiHead Attention):

  2. 残差连接和层归一化:

  3. 编码器-解码器注意力机制: (这里 是解码器的输出, 和 是编码器的输出)

  4. 残差连接和层归一化:

  5. 前馈神经网络:

  6. 残差连接和层归一化:

7. 总结
  • 输入嵌入:将输入文本转化为嵌入向量,加上位置编码。

  • 多头注意力机制:计算查询、键和值的注意力,捕捉输入的不同部分。

  • 前馈神经网络:通过两个线性变换和ReLU激活处理注意力输出。

  • 残差连接和层归一化:保持网络的稳定性和信息流动。

  • 编码器和解码器堆叠:多个编码器层和解码器层堆叠形成完整的Transformer模型。

这种架构使得Transformer模型在处理自然语言任务时表现出色,能够高效处理长文本并生成高质量的文本输出。

完整案例

下面,咱们把Transformer基本的框架和一些关键代码分享给大家,大家可以开始构建和理解。

首先,我们需要导入必要的库和数据集。数据集可以是情感分析的IMDB电影评论数据集。

有需要数据集的同学,可以在文末自行领取!

import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

df = pd.read_csv('IMDB Dataset.csv')

# 数据预处理
df['text'] = df['review'].str.lower()  # 将文本转换为小写
df['text'] = df['text'].str.replace('<br />', ' ')  # 清洗HTML标签

# 划分训练集和测试集
train_texts, val_texts, train_labels, val_labels = train_test_split(df['text'], df['sentiment'], test_size=0.2, random_state=42)

数据处理

在Transformer模型中,文本数据需要转换为数字序列。这里使用Tokenizer来进行文本向量化。

# 设定参数
max_len = 200  # 句子的最大长度
vocab_size = 10000  # 词汇表的大小
embedding_dim = 128  # 词嵌入的维度

# 实例化和拟合Tokenizer
tokenizer = Tokenizer(num_words=vocab_size, oov_token='<OOV>')
tokenizer.fit_on_texts(train_texts)

# 序列化文本
train_sequences = tokenizer.texts_to_sequences(train_texts)
val_sequences = tokenizer.texts_to_sequences(val_texts)

# 填充序列
train_padded = pad_sequences(train_sequences, maxlen=max_len, padding='post', truncating='post')
val_padded = pad_sequences(val_sequences, maxlen=max_len, padding='post', truncating='post')

构建Transformer模型

以下是一个简化的Transformer模型示例,包含Self-Attention层、Feedforward层和残差连接。

from tensorflow.keras.layers import Input, Dense, Embedding, GlobalAveragePooling1D, Dropout
from tensorflow.keras.layers import LayerNormalization, MultiHeadAttention, Dense, GlobalAveragePooling1D
from tensorflow.keras.models import Model

class MultiHeadSelfAttention(tf.keras.layers.Layer):
    def __init__(self, embed_dim, num_heads=8):
        super(MultiHeadSelfAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        
        assert embed_dim % num_heads == 0
        
        self.query_dense = Dense(embed_dim)
        self.key_dense = Dense(embed_dim)
        self.value_dense = Dense(embed_dim)
        self.combine_heads = Dense(embed_dim)
    
    def call(self, inputs):
        query = self.query_dense(inputs)
        key = self.key_dense(inputs)
        value = self.value_dense(inputs)
        
        query = self.split_heads(query)
        key = self.split_heads(key)
        value = self.split_heads(value)
        
        scaled_attention = self.self_attention(query, key, value)
        scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
        original_shape = tf.shape(scaled_attention)
        scaled_attention = tf.reshape(scaled_attention, 
                                      (original_shape[0], original_shape[1], self.embed_dim))
        
        outputs = self.combine_heads(scaled_attention)
        return outputs
    
    def split_heads(self, x):
        batch_size = tf.shape(x)[0]
        x = tf.reshape(x, (batch_size, -1, self.num_heads, self.head_dim))
        return tf.transpose(x, perm=[0, 2, 1, 3])
    
    def self_attention(self, query, key, value):
        matmul_qk = tf.matmul(query, key, transpose_b=True)
        depth = tf.cast(tf.shape(key)[-1], tf.float32)
        logits = matmul_qk / tf.math.sqrt(depth)
        attention_weights = tf.nn.softmax(logits, axis=-1)
        output = tf.matmul(attention_weights, value)
        return output

class TransformerBlock(tf.keras.layers.Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
        super(TransformerBlock, self).__init__()
        self.att = MultiHeadSelfAttention(embed_dim, num_heads)
        self.ffn = tf.keras.Sequential([
            Dense(ff_dim, activation='relu'),
            Dense(embed_dim)
        ])
        self.layernorm1 = LayerNormalization(epsilon=1e-6)
        self.layernorm2 = LayerNormalization(epsilon=1e-6)
        self.dropout1 = Dropout(rate)
        self.dropout2 = Dropout(rate)
    
    def call(self, inputs, training=None):
        attn_output = self.att(inputs)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(inputs + attn_output)
        
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        return self.layernorm2(out1 + ffn_output)


# 构建Transformer模型
embed_dim = embedding_dim
num_heads = 8
ff_dim = 128

inputs = Input(shape=(max_len,))
embedding_layer = Embedding(vocab_size, embed_dim)(inputs)
transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)(embedding_layer)
pooling_layer = GlobalAveragePooling1D()(transformer_block)
outputs = Dense(1, activation='sigmoid')(pooling_layer)

model = Model(inputs=inputs, outputs=outputs)

训练和评估模型

import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 定义回调函数
callbacks = [
    tf.keras.callbacks.EarlyStopping(patience=3, monitor='val_loss'),
    ModelCheckpoint('./transformer_model.weights.h5', save_best_only=True, save_weights_only=True)
]

# 训练模型时使用这些回调函数
history = model.fit(train_padded, train_labels, epochs=20, batch_size=32,
                    validation_data=(val_padded, val_labels), callbacks=callbacks)

# 评估模型
model.evaluate(val_padded, val_labels)

可视化训练过程

import matplotlib.pyplot as plt

# 绘制训练 & 验证的准确率值
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Val'], loc='upper left')
plt.show()

# 绘制训练 & 验证的损失值
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Val'], loc='upper left')
plt.show()

上面整个代码中,构建了一个简单的Transformer模型,并用IMDB数据集进行了文本分类。大家可以根据实际需要进行进一步的调整和优化,比如调整超参数、增加层数、使用更复杂的数据集等等。

模型分析

以上的这个案例中,我们使用Transformer模型进行IMDb电影评论数据集的情感分析。下面总结一下Transformer模型的优缺点,并将其与其他类似算法进行对比,讨论何时使用Transformer模型以及何时考虑其他算法。

Transformer模型的优缺点
优点
  1. 处理长依赖关系:Transformer模型能够有效地捕捉长距离依赖关系,因为它不受限于序列长度,这对处理长文本非常有利。

  2. 并行计算:由于没有递归结构,Transformer模型可以并行处理输入数据,这显著提高了训练速度。

  3. 高性能:Transformer模型在许多自然语言处理任务中表现出色,如机器翻译、文本生成和问答系统等。

  4. 扩展性好:Transformer模型的架构适用于各种规模的数据集和计算资源,可以通过增加层数和注意力头数来增强模型能力。

  5. 适应多种任务:预训练的Transformer模型(如BERT、GPT等)可以通过微调适应不同的下游任务,表现优异。

缺点
  1. 计算资源消耗大:Transformer模型需要大量的计算资源和内存,特别是在处理大规模数据集和长文本时。

  2. 训练时间长:尽管可以并行处理,但Transformer模型仍然需要较长的训练时间,尤其是大型模型。

  3. 数据需求量大:Transformer模型需要大量的训练数据来实现最佳性能,对于数据稀缺的任务可能不适用。

与其他算法的对比
RNN(循环神经网络)
  • 优点

  • 能够处理变长序列数据。

  • 模型参数较少,适合小规模数据集和较短序列。

  • 缺点

  • 难以捕捉长距离依赖关系。

  • 训练时无法并行,速度较慢。

  • 易于出现梯度消失和梯度爆炸问题。

LSTM(长短期记忆网络)和 GRU(门控循环单元)
  • 优点

  • 能够捕捉较长的依赖关系,比RNN效果好。

  • 在一定程度上缓解梯度消失问题。

  • 缺点

  • 仍然无法与Transformer的并行计算相比,训练速度较慢。

  • 模型复杂度较高,训练资源需求大。

CNN(卷积神经网络)
  • 优点

  • 可以捕捉局部特征,适合图像和一些文本任务。

  • 计算效率高,可以并行计算。

  • 缺点

  • 难以捕捉长距离依赖关系。

  • 通常需要固定大小的输入,对于变长序列不够灵活。

何时使用Transformer模型
  1. 处理长文本:Transformer模型在处理长文本时表现尤为出色,因为它能够捕捉长距离的依赖关系。

  2. 需要高性能:在追求模型性能和准确率的任务中,Transformer模型通常能提供最好的结果,特别是预训练模型(如BERT、GPT等)。

  3. 并行计算资源充足:如果你有足够的计算资源和内存,Transformer模型的并行计算优势可以显著提高训练效率。

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型实际应用案例分享

①智能客服:某科技公司员工在学习了大模型课程后,成功开发了一套基于自然语言处理的大模型智能客服系统。该系统不仅提高了客户服务效率,还显著降低了人工成本。
②医疗影像分析:一位医学研究人员通过学习大模型课程,掌握了深度学习技术在医疗影像分析中的应用。他开发的算法能够准确识别肿瘤等病变,为医生提供了有力的诊断辅助。
③金融风险管理:一位金融分析师利用大模型课程中学到的知识,开发了一套信用评分模型。该模型帮助银行更准确地评估贷款申请者的信用风险,降低了不良贷款率。
④智能推荐系统:一位电商平台的工程师在学习大模型课程后,优化了平台的商品推荐算法。新算法提高了用户满意度和购买转化率,为公司带来了显著的增长。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

  • 19
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值