AI线性算法的“视觉”理解-线性代数(2)

前言-PREFACE

通过上一篇文章,我们已经初步掌握了线性代数作为是人工智能世界通用“语言”的基本概念和“语法”。线性代数作为人工智能最重要的基础数学学科之一,应用非常广泛,在某些情况下,可能会涉及较为复杂和抽象运算,为了更加直观理解运算过程,深入洞察和分析运算本质,从几何和空间等“视觉”角度的探讨线性代数的运算过程非常有意义。

线性代数的核心在于对空间的变换和操作。既然从“视觉”角度来理解线性代数,那么线性代数的“视觉”表示和线性变换是主要的两个概念,但是在高维空间中,可视化变得非常困难,只能通过数学的方法来理解它们,本文主要以线性代数的二维和三维视觉来进行探讨,读者可以以此来理解和类推更高维情况。

线性代数的“视觉”理解-VISIBLE LINEAR ALGEBRA

 线性代数的视觉表示 

首先我们先来了解一下线性代数的概念的“视觉”表示,然后才能更好理解变化过程。

1、向量的表示

初学者经常会困惑于向量到底是被视为空间中的一个点,还是为带有方向和长度的线段。其实两种理解都对,虽然将向量视为空间中的点的情况更常见,但究竟如何选择主要取决于具体的应用场景和问题的背景,下面分别针对不同的情况进行举例说明:

  • 向量作为空间中的点:

    • 表示数据点:在高维空间中,向量常用于表示数据集中的一个点。每个维度对应一个特征,向量的坐标表示该点在各个维度上的取值。当我们主要关注向量之间距离进行相似性计量时,向量作为空间的点进行点间距离计算会更适用。

    • 应用场景:在回归、分类、聚类等任务中,我们通常将样本数据看作是高维空间中的点,利用这些点的位置和相对距离来进行分析和建模,下面是二维空间的相关示意图:

      图片

  • 向量作为带方向和长度的线段:

    • 表示变化或差异:在某些情况下,向量被理解为具有方向和长度的线段,可以更直观地理解向量间运算,以及图像的旋转、缩放、平移等几何变换。

    • 应用场景:以下为向量加法(减法可以以反方向类推)、乘法的示意图,其中:向量a、b相加结果为以a、b为有向线段组成的平行四边形的对角线c,也可以理解为从原点出发先沿向量a方向走a模长的距离,然后再沿向量b方向走b模长的距离,然后到达向量c,该结论可以以几何的方式进行推导,相对比较简单,本文不再赘述;向量a乘以标量r等于在a相同方向进行缩放,如果r为负值,则为反方向缩放;向量a、b间点积为a在b上投影(a的模长乘以夹角余弦值,即|a|•cosθ)的长度乘以b的模长,结果是一个标量,用于表示a,b间的相似程度。

图片

在优化算法(如梯度下降)中,向量通常表示梯度或步长,它们指出了函数值变化的方向和大小。神经网络的权重更新也可以看作是向量的方向和长度的变化。

2、向量空间的表示

满足加法封闭性和标量乘法封闭性的向量集合组成了向量空间,这个向量空间的相关运算满足交换律、结合律、分配律等,以及存在零向量和负向量等性质。每个向量空间都有一个基,基是一组线性无关的向量,它们可以生成整个向量空间。向量空间的维度是其基中向量的数量。

对于二维实数R向量空间可以想象成为在二维空间所有点(x,y)的集合,组成一个无限延伸的二维平面,同样的,对于三维实数R向量空间可以想象成为在三维空间所有点(x,y,z)的集合,组成一个无限延伸的三维平面,而如果向量元素为整数,则为向量空间为离散型。

子空间是向量空间的一个子集,它本身也是一个向量空间。即子空间继承了向量空间的加法和数乘运算。例如:在二维平面上,所有经过原点的直线构成一个子空间;在三维空间中,所有经过原点的平面也构成一个子空间,可以用下图形象表示:

图片

 线性代数的变换 

1、向量的空间变换

矩阵与向量的乘法相当于对向量进行空间的变换,可以将矩阵视为一种函数,函数的效果包括降维、升维或是原空间内的变换。该变换在在人工智能领域有着广泛而深入的应用,包括特征提取、主成因分析、神经网络参数优化等各个方面。以下公式以矩阵A作为函数,与向量x相乘后的计算结果为向量b,不同情况下分别表示了向量x的变化:

1)降维(三维变成二维)(降维通常用于数据压缩、特征提取或可视化):

图片

2)空间内变换(维度无变化):

图片

3)升维(二维变成三维)(升维可以帮助改善模型的效果):

图片

2、向量空间与线性方程组

假如有以下线性方程组

可以表示为A

x=b,其中A是矩阵:

图片

x、b是向量:

我们将矩阵A的列向量视为从原点出发的不同方向,其列向量生成了一个子空间,称为矩阵A列空间,列空间中的每一个点都可以通过矩阵 A的列向量的线性组合到达。线性方程的求解过程就是确认向量b是否可以由矩阵列向量的线性组合生成,以及有多少种方式生成,而向量x的每个元素为矩阵对应列向量的线性变化的系数。线性方程的解可以分为以下几种情况:

有解且唯一:如果矩阵A的列向量线性无关且矩阵满秩(即秩等于列数),那么线性方程组有唯一解。这意味着从原点到向量b只有一条路径。所有列向量的线性组合只能有一个唯一的方式生成b

例如:在二维空间,两个线性无关的向量a、c通过向量x对应分量的线性变化,到达向量b的过程的两种情况,其他情况读者可自行分析。

图片

在三维空间,三个方向上切面上的直线交互点只有一个,这个交互点(下图红色点)就是结果向量b

图片

  • 有解且有无穷多解:如果矩阵A的列向量线性相关,列空间的维度小于列数,方程组将可能有无穷多解。这意味着存在无数条路径可以从原点到达b。这些路径形成了一个线性子空间,这个子空间中的每一点都可以通过不同的线性组合方式生成b

    例如:在二维平面,两个线性相关的向量a、c在同一条直线上,如果目标向量b与向量a、c共线,则也存在无穷多个解。

图片

  • 在三维空间,如果某两个列向量线性相关,则这两个列向量只能线性变换在同一平面,立体三个切面少了一个平面,剩下两个平面的交集为一条直线(下图红色线),如果向量b在这条相交的直线上,这样解就变成了无穷。

    图片

  • 无解:如果b不在矩阵A的列空间中,方程组无解。这意味着没有任何路径可以通过矩阵A的列向量从原点出发到达bb 位于列空间之外,无法通过任何线性组合生成。

    例如:在二维平面,如果向量c不在向量a、b共线的直线上,则无论怎样线性变换,也无法到达c点。

    图片

    在三维空间,下图如果矩阵A的列向量空间为一个平面,无论如何进行线性变换也到达不了三维空间红色的点。

    图片

结语-EPILOGUE

通过上述内容,将向量和矩阵运算过程和结果可视化,使得抽象的计算更加形象和可理解,帮助大家更快掌握线性代数中计算原理。当然上述例子只是描述了容易展示的二维和三维空间的情况,更高维空间的情况读者可以此为例进行类推。

  • 9
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值