深度学习目标检测中如何使用YOLO系列算法来训练McShips船舶数据集模型 识别民用船舶及军舰的检测

深度学习目标检测中如何使用YOLO系列算法来训练McShips船舶数据集模型 识别民用船舶及军舰的检测

McShips船舶数据集,标签为xml文件格式,可用于yolo系列算法,旨在进行船舶检测和细粒度分类。
在这里插入图片描述

。7996张图像,两类标签.民用船舶"civilianship"和军舰"warship"。

每个图像都用边界框和船级标签仔细注释。由于以下两个原因,数据集具有挑战性:首先,由于船舶具有非常相似的船型,因此船级之间的差异很小;其次,由于视点变化、天气条件变化、光照变化、尺度变化、遮挡、背景杂乱等因素,同一船级内的船舶可能存在很大的差异。在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
利用McShips船舶数据集进行船舶检测和细粒度分类,使用YOLO系列算法(例如YOLOv5或YOLOv8)来训练模型。XML文件格式,XML标签转换为YOLO所需的格式。介绍如何准备数据、训练模型、评估性能以及一些优化策略。

以下文字及代码仅供参考。

数据准备

1. XML到YOLO格式的转换

假设每个XML文件包含一个或多个边界框及其对应的类别信息,我们需要编写一个脚本来将这些信息转换为YOLO格式。YOLO格式要求每行代表一个对象,格式如下:

class_id center_x center_y width height

所有值都是相对于图像尺寸归一化后的浮点数。

下面是一个简单的Python脚本示例,用于执行此转换:

import os
import xml.etree.ElementTree as ET

def convert(size, box):
    dw = 1./(size[0])
    dh = 1./(size[1])
    x = (box[0] + box[1])/2.0 - 1
    y = (box[2] + box[3])/2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(xml_file_path, output_dir, classes):
    tree = ET.parse(xml_file_path)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    image_name = os.path.basename(xml_file_path).replace('.xml', '.jpg')
    out_file = open(os.path.join(output_dir, image_name.replace('.jpg', '.txt')), 'w')

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

# 示例调用
classes = ['civilianship', 'warship']
for xml_file in os.listdir('path_to_xml_labels'):
    if xml_file.endswith('.xml'):
        convert_annotation(os.path.join('path_to_xml_labels', xml_file), 'path_to_output_labels', classes)
2. 创建YOLO配置文件

创建一个data.yaml文件,定义数据集路径和类别信息:

train: ./images/train/
val: ./images/val/

nc: 2  # 类别数量
names: ['civilianship', 'warship']  # 类别名

确保你的数据集按照以下结构组织:

dataset/
├── images/
│   ├── train/
│   └── val/
└── labels/
    ├── train/
    └── val/

模型训练

使用YOLOv5或YOLOv8进行模型训练。这里以YOLOv5为例:

from ultralytics import YOLO

def main_train():
    model = YOLO('yolov5s.pt')  # 或者选择其他预训练模型
    
    results = model.train(
        data='./path/to/data.yaml',
        epochs=300,
        imgsz=640,
        batch=16,
        project='./runs/detect',
        name='ship_detection',
        optimizer='SGD',
        device='0',
        save=True,
        cache=True,
    )

if __name__ == '__main__':
    main_train()

模型评估与优化

在训练完成后,可以通过验证集评估模型性能,并根据需要调整超参数或采用模型优化技术如混合精度训练、剪枝等。

推理与可视化

加载训练好的模型进行推理并可视化结果:

from ultralytics import YOLO
import cv2
from PIL import Image

model = YOLO('./runs/detect/ship_detection/weights/best.pt')

def detect_ship(image_path):
    results = model.predict(source=image_path)
    img = cv2.imread(image_path)
    for result in results:
        boxes = result.boxes.numpy()
        for box in boxes:
            r = box.xyxy
            x1, y1, x2, y2 = int(r[0]), int(r[1]), int(r[2]), int(r[3])
            label = result.names[int(box.cls)]
            cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)  # 绘制矩形框
            cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
    return img

# 示例调用
result_image = detect_ship('your_test_image.jpg')
Image.fromarray(cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB)).show()  # 使用PIL显示图像

通过上述步骤,您可以有效地使用McShips船舶数据集进行船舶检测和细粒度分类任务-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值