OpenCV(24-4):图像轮廓之四:轮廓匹配

24.6 轮廓匹配

cv2.pointPolygonTest() 查找图像中的点与轮廓线之间的最短距离

此函数查找图像中点与轮廓线之间的最短距离。当点在轮廓线外时,返回的距离为负,点在轮廓线内时返回的距离为正,点在轮廓线上返回的距离为零。

函数原型 retval = cv2.pointPolygonTest(contour,point,measureDist)

参数

  1. contoure1:图像中的轮廓
  2. point: 图像中的点
  3. measureDist如果为True,函数估计从该点到最近轮廓边的带符号距离。否则,函数只检查点是否在轮廓线内。

返回值:retval:该函数确定点是在轮廓线内、外还是在边缘上(或与顶点重合)。相应地,它返回正(内部)、负(外部)或零(沿边)值。当measureDist为True时,返回值为该点与最近的轮廓边之间的有符号距离;当measureDist为False时,返回值分别为+1、-1和0

cv2.matchShape() 匹配(比较)两个轮廓

OpenCV附带了一个函数cv.matchShapes(),它使我们能够比较两个形状或两个轮廓,并返回一个显示相似性的度量。结果越低,匹配越好。它是基于hu矩值计算的。

函数原型 retval = cv2.matchShape(cnt1, cnt2,method,param)

参数

  1. cnt1、cnt2:两个比较的的轮廓,数组
  2. method: 比较参数1和2相似度的方法,int 。opencv提供了三种如下:CV_CONTOURS_MATCH_I1  = 1、CV_CONTOURS_MATCH_I2  = 2、CV_CONTOURS_MATCH_I3  = 3
  3. param:float,目前还不支持,直接赋值0。

返回值:retval: float。结果越低,匹配越好。它是基于hu矩值计算的。

示例

import cv2 
import numpy as np

# 1 读取图像
img = cv2.imread('C:/Users/xxx/Downloads/matchImg.png',0)

# 2 二值化图像
ret, thresh = cv2.threshold(img, 127, 255,0)

# 3 查找轮廓
contours,hierarchy = cv2.findContours(thresh,2,1)

n=len(contours)       #轮廓个数
contoursImg=[]
cv2.imshow("original",img)  #显示原图
# 逐一在全黑背景上绘制并显示轮廓
for i in range(n):
    temp = np.zeros(img.shape, np.uint8)  # 生成黑背景
    contoursImg.append(temp)
    contoursImg[i] = cv2.drawContours(contoursImg[i], contours, i, (255, 255, 255), 3)  # 绘制轮廓
    cv2.imshow("contours[" + str(i) + "]", contoursImg[i])#显示轮廓
    
    # 计算点(100,100)到轮廓线的距离
    retval=cv2.pointPolygonTest(contours[i],(100,100),True)
    print(f"点(100,100)到轮廓线{i}之间的最短距离={retval}.")
# 逐一匹配各个轮廓的匹配度
for i in range(n):
    cnt1 = contours[i]
    for j in range(i+1,n):
        cnt2 = contours[j]
        ret = cv2.matchShapes(cnt1,cnt2,1,0.0)
        print(f'轮廓线{i}与轮廓线{j}的匹配结果 = {ret}.')
      
cv2.waitKey()
cv2.destroyAllWindows()

ret = cv2.matchShapes(cnt1,cnt2,1,0.0)
print( ret )

 运行结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值