李白打酒加强版
问题描述
话说大诗人李白, 一生好饮。幸好他从不开车。
一天, 他提着酒显, 从家里出来, 酒显中有酒 2 斗。他边走边唱:
无事街上走,提显去打酒。 逢店加一倍, 遇花喝一斗。
这一路上, 他一共遇到店 NN 次, 遇到花 MM 次。已知最后一次遇到的是花, 他正好把酒喝光了。
请你计算李白这一路遇到店和花的顺序, 有多少种不同的可能?
注意: 显里没酒 ( 0 斗) 时遇店是合法的, 加倍后还是没酒; 但是没酒时遇 花是不合法的。
输入格式
第一行包含两个整数 NN 和 MM.
输出格式
输出一个整数表示答案。由于答案可能很大,输出模 1000000007 的结果.
#include <iostream>
#include <vector>
using namespace std;
const int MOD = 1000000007;
// 计算李白遇到店和花的不同顺序数量
int countWays(int N, int M) {
// 创建三维数组dp,dp[i][j][k]表示遇到i次店,j次花,且酒壶中有k斗酒的顺序数量
vector<vector<vector<int>>> dp(N + 1, vector<vector<int>>(M + 1, vector<int>(101, 0)));
// 初始化边界条件
dp[0][0][2] = 1;
// 动态规划填表
for (int i = 0; i <= N; ++i) {
for (int j = 0; j <= M; ++j) {
for (int k = 0; k <= 100; ++k) {
if (dp[i][j][k] > 0) {
// 遇到店的情况
if (i < N) {
int new_k = 2 * k;
dp[i + 1][j][new_k] = (dp[i + 1][j][new_k] + dp[i][j][k]) % MOD;
}
// 遇到花的情况
if (j < M && k > 0) {
int new_k = k - 1;
dp[i][j + 1][new_k] = (dp[i][j + 1][new_k] + dp[i][j][k]) % MOD;
}
}
}
}
}
// 因为最后一次遇到花且酒喝光,所以是遇到N次店,M - 1次花,酒剩1斗的情况
return dp[N][M - 1][1];
}
int main() {
int N, M;
cin >> N >> M;
int result = countWays(N, M);
cout << result << endl;
return 0;
}