如果是偶数,我们只需要判断是否存在一些元素的和等于sum/2,如果等于sum/2,那么剩下的肯定也等于sum/2,说明我们可以把数组分为元素和相等的两部分。
那么这个时候问题就很明朗了,假设sum/2
是一个背包的容量,我们只需要找出一些元素把他放到背包中,如果背包中元素的最大和等于sum/2
,说明我们可以把数组分成完成相等的两份。这不就是经典的0-1
背包问题吗。之前也讲过371,背包问题系列之-基础背包问题,具体可以看下,这里就不在重复介绍。我们在来找一下他的递推公式,定义dp[i][j]表示把第i个物品放到容量为j的背包中所获得的的最大值。
第i个物品的值是nums[i-1]:
如果nums[i-1]>j
,说明背包容量不够,第i
件物品放不进去,所以我们不能选择第i
个物品,那么
dp[i][j]=dp[i-1][j];
如果nums[i-1]<=j
,说明可以把第j
个物品放到背包中,我们可以选择放也可以选择不放,取最大值即可,如果放就会占用一部分背包容量,最大价值是
dp[i][j]=dp[i-1][j-nums[i-1]]+nums[i-1]
如果不放
dp[i][j]=dp[i-1][j];
取两者的最大值
最终递推公式如下
if (j >= nums[i - 1]) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i-1][j - nums[i - 1]] + nums[i - 1]);
} else {
dp[i][j] = dp[i - 1][j];
}
我们来看下最终代码
public boolean canPartition(int[] nums) {
//计算数组中所有元素的和
int sum = 0;
for (int num : nums)
sum += num;
//如果sum是奇数,说明数组不可能分成完全相等的两份
if ((sum & 1) == 1)
return false;
//sum除以2
int target = sum >> 1;
int length = nums.length;
int[][] dp = new int[length + 1][target+1];
for (int i = 1; i <= length; i++) {
for (int j = 1; j <= target; j++) {
//下面是递推公式
if (j >= nums[i - 1]) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i-1][j - nums[i - 1]] + nums[i - 1]);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
//判断背包最大是否能存放和为target的元素
return dp[length][target] == target;
}
我们还可以这样写,二维数组dp
是boolean
类型,dp[i][j]
表示数组中前i
个元素的和是否可以组成和为j
,很明显dp[0][0]=true
,表示前0
个元素(也就是没有元素)可以组成和为0
。代码如下
public boolean canPartition(int[] nums) {
//计算数组中所有元素的和
int sum = 0;
for (int num : nums)
sum += num;
//如果sum是奇数,说明数组不可能分成完全相等的两份
if ((sum & 1) == 1)
return false;
//sum除以2
int target = sum >> 1;
int length = nums.length;
boolean[][]dp = new boolean[length + 1][target+1];
dp[0][0] = true;//base case
for (int i = 1; i <= length; i++) {
for (int j = 1; j <= target; j++) {
//递推公式
if (j >= nums[i - 1]) {
dp[i][j] = (dp[i - 1][j] || dp[i-1][j - nums[i - 1]]);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[length][target];
}
我们看到上面二维数组计算的时候当前值只和上面一行有关,所以我们可以把它改成一维的,注意第二个for
循环要倒叙,否则会把前面的值给覆盖掉导致结果错误,仔细看一下
dp[j] = (dp[j] || dp[j - nums[i - 1]]);
就明白了,相当于同一行后面的值依赖前面的,如果不是倒叙,前面的值被修改了,在计算后面的就会导致错误。我们来看下代码。
public boolean canPartition(int[] nums) {
//计算数组中所有元素的和
int sum = 0;
for (int num : nums)
sum += num;
//如果sum是奇数,说明数组不可能分成完全相等的两份
if ((sum & 1) == 1)
return false;
//sum除以2
int target = sum >> 1;
int length = nums.length;
boolean[] dp = new boolean[target + 1];
dp[0] = true;//base case
for (int i = 1; i <= length; i++) {
//注意这里j要倒叙
for (int j = target; j >= 1; j--) {
//递推公式
if (j >= nums[i - 1]) {
dp[j] = (dp[j] || dp[j - nums[i - 1]]);
}
//else {//这里省略
// dp[j] = dp[j];
//}
}
}
return dp[target];
}
DFS解决
每种元素可以选择也可以不选择,只需要判断他所有的可能组合中,元素和是否有等于sum/2的,我们可以把它看做是一棵二叉树,左子节点表示选择当前元素,右子节点表示不选择当前元素,如下图所示,橙色节点表示选择当前元素,蓝色表示不选择。
我们来看下代码
public boolean canPartition(int[] nums) {
//计算数组中所有元素的和
int sum = 0;
for (int num : nums)
sum += num;
//如果sum是奇数,说明数组不可能分成完全相等的两份
if ((sum & 1) == 1)
return false;
return dfs(nums, sum >> 1, 0);
}
private boolean dfs(int[] nums, int target, int index) {
//targe等于0,说明存在一些元素的和等于sum/2,直接返回true
if (target == 0)
return true;
//如果数组元素都找完了,或者target小于0,直接返回false
if (index == nums.length || target < 0)
return false;
//选择当前元素和不选择当前元素两种情况
return dfs(nums, target - nums[index], index + 1)
|| dfs(nums, target, index + 1);
}
但很遗憾的是,因为计算量太大,会导致运行超时,我们可以优化一下,来看下代码
还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!
王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。
对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!
【完整版领取方式在文末!!】
93道网络安全面试题
内容实在太多,不一一截图了
黑客学习资源推荐
最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
😝朋友们如果有需要的话,可以联系领取~
1️⃣零基础入门
① 学习路线
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
② 路线对应学习视频
同时每个成长路线对应的板块都有配套的视频提供:
2️⃣视频配套工具&国内外网安书籍、文档
① 工具
② 视频
③ 书籍
资源较为敏感,未展示全面,需要的最下面获取
② 简历模板
因篇幅有限,资料较为敏感仅展示部分资料,添加上方即可获取👆