Text Embeddings Inference:高性能文本嵌入推理解决方案
Text Embeddings Inference (TEI)是由Hugging Face开发的一个强大的开源工具包,旨在为文本嵌入和序列分类模型提供高性能的推理解决方案。随着自然语言处理技术的快速发展,文本嵌入在各种应用中扮演着越来越重要的角色。TEI的出现为开发者和研究人员提供了一个便捷高效的工具,可以轻松部署和服务各种先进的文本嵌入模型。
TEI的主要特性
TEI实现了多项优化功能,使其成为一个性能卓越的推理解决方案:
-
无需模型图编译步骤:TEI直接加载和运行模型,省去了耗时的编译过程。
-
支持Mac上的Metal本地执行:对于使用Apple Silicon芯片的Mac用户,TEI提供了Metal支持,充分利用硬件性能。
-
小型Docker镜像和快速启动时间:TEI的Docker镜像体积小巧,启动迅速,非常适合无服务器部署场景。
-
基于Token的动态批处理:TEI能够智能地对输入进行批处理,提高吞吐量。
-
优化的Transformer代码:TEI集成了Flash Attention、Candle和cuBLASLt等先进技术,大幅提升推理性能。
-
Safetensors权重加载:使用Safetensors格式加载模型权重,提高加载速度和安全性。
-
生产就绪:支持分布式追踪(OpenTelemetry)和Prometheus指标,便于在生产环境中监控和调优。
支持的模型类型
TEI目前支持多种类型的文本嵌入模型:
- Nomic、BERT、CamemBERT、XLM-RoBERTa等使用绝对位置编码的模型
- JinaBERT使用Alibi位置编码的模型
- Mistral、Alibaba GTE和Qwen2使用RoPE位置编码的模型
此外,TEI还支持CamemBERT