一、题目链接
二、题目
三、算法原理
暴力解法:每次枚举一个中心下标就要左边加一遍、右边加一遍,时间复杂度是O(n^2)。枚举下标是O(n)的时间复杂度,求和的时候也要用O(n)的时间复杂度。
细节问题:f[i] = f[i - 1] + nums[i - 1],当下标为0会出现越界访问f[-1]、nums[-1],所以要对下标为0时的情况特殊处理,下标0左侧没有元素,即下标0左侧区间和为0。同理g[n - 1]一样,下标n - 1右侧没有任何元素,此时右区间元素和为0。
四、编写代码
class Solution {
public:
int pivotIndex(vector<int>& nums)
{
int n = nums.size();
vector<int> f(n), g(n);// 两个数组里的所有数据默认初始化为0
// 1.预处理前缀和数组和后缀和数组
for (int i = 1; i < n; ++i)// 直接从下标1开始,f[0]已经为0,若访问下标0会越界访问,g[n - 1]同理
f[i] = nums[i - 1] + f[i - 1];
for (int i = n - 2; i >= 0; --i)
g[i] = g[i + 1] + nums[i + 1];
// 2.使用
for (int i = 0; i < n; ++i)
if (f[i] == g[i])
return i;
return -1;
}
};