题意:
题目描述
有一堆石头,用整数数组 a 表示。其中 ai 表示第 i 块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x≤y。那么粉碎的可能结果如下:
- 如果 x=y,那么两块石头都会被完全粉碎;
- 如果 x!=y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y−x。
最后,最多只会剩下一块石头。输出此石头最小的
输入格式
输入数据共两行。
第一行输入一个整数 n (1≤n≤10000),表示石子的数量;
第二行输入 n 个整数 ai (1≤ai≤5000),表示第 i 块石头的重量。
可能重量。如果没有石头剩下,就输出 0。
思路: 参考10527 - 洛谷专栏 题解2:P10527 最后一块石头的重量 - 洛谷专栏
1.首先这道题并不能贪心,得发现最终的答案就是所有的数,按照某种方式加减,关于想法可以参照给出的两篇题解,解释都非常明了。
可以看作是不同的数字互相减少b-(a-c),导致前面的权值分成正负,形成了两个集合,求集合和的差即可。
那么问题从此刻开始就可以转换成背包了
2.背包,dp【i】【j】是填入第i个物品(正负自选)j 重量是否能存在,最终询问所有物品填入后,最小的存在的j重量。但是完全暴力01的时间复杂度O(n*)包括空间复杂度,这个时间和空间复杂度是不被接受的。
于是使用了随机化+bitset优化+滚动数组。
解释:
bitset提供了常数的时间复杂度减小,如果你不会bitset - OI Wiki
随机化则是让减少,因为为了得到最小值,一定是分成+-两组的,这让最终的答案不会达到一个不可接受的空间和时间复杂度。因为数据可能把正号组全部放在前面了,但是随机打乱后,就不会存在这一情况了,时间空间被降到了一个合理的程度。
滚动数组就是因为01背包只要考虑前一状态,剩下的已有状态不会对答案有影响,只要提供两个数组让最终的答案能得出就行了。
随机数感觉十分的玄学啊……
3.状态转移:
bitset优化之后,当前出现的数字变成了某一状态,0/1代表有无。
那么一个数添加正或者添加负,就是dp[i & 1] = (dp[~i & 1] << a[i]) | (dp[~i & 1] >> a[i]);
已经有的状态加上这个数,已经有的状态减去这个数。
但是如果我们真的将正负号都分清楚,空间得开成的两倍(可能放的都是负的),但是好在其实正负的区别就是绝对值,绝对值就是最后的答案,这样让空间继续缩小了。
因此现在的dp【i】【j】是添加到第i个数,当前剩下的数的绝对值是多少
但是使用绝对值又有问题了,3-5=-2,但是bitset可没有-2,我们也没有偏移bitset
for (int j = a[i]; j > 0;j--)
dp[i & 1][a[i]-j] = dp[i & 1][a[i]-j] | dp[~i & 1][j];
实现了手动的绝对值偏移回正,前一状态的3如果存在,-5之后会得到2。
那么至此,整道题应该完整的解释明白了,代码很短,其实主要是神奇的时间空间优化
代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define int128 __int128
#define endl '\n'
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
const int N = 2e4 + 10;
const int INF = 1e18;
const int MOD = 998244353;
int a[N];
bitset<(1ll << 20)> dp[2];
void solve()
{
int n;
cin >> n;
for (int i = 1; i <= n;i++){
cin >> a[i];
}
shuffle(a+1, a + n+1, default_random_engine(time(0)));
dp[0].set(0);
for (int i = 1; i <= n;i++){
dp[i & 1] = (dp[~i & 1] << a[i]) | (dp[~i & 1] >> a[i]);
for (int j = a[i]; j > 0;j--){
dp[i & 1][a[i]-j] = dp[i & 1][a[i]-j] | dp[~i & 1][j];
}
}
for (int i = 0; i < (1 << 20);i++){
if(dp[n&1][i]){
cout << i << endl;
return;
}
}
}
signed main()
{
// IOS;
int t = 1;
// cin >> t;
while (t--)
{
solve();
}
}