LLM安全:探索大型语言模型的安全挑战与防御策略

awesome-llm-security

LLM安全:探索大型语言模型的安全挑战与防御策略

近年来,随着ChatGPT等大型语言模型(LLM)的迅速发展和广泛应用,LLM安全问题也日益引起学术界和产业界的关注。本文将全面介绍LLM安全领域的最新研究进展、实用工具和相关资源,为读者提供一个全面的LLM安全概览。

LLM面临的主要安全威胁

提示注入攻击

提示注入是目前LLM面临的最主要安全威胁之一。攻击者通过精心设计的提示,可以绕过LLM的安全限制,使其产生有害或不当的输出。例如:

  • 白盒攻击:通过分析LLM的内部结构设计攻击提示
  • 黑盒攻击:通过反复尝试找到有效的攻击提示
  • 间接提示注入:利用外部数据源进行攻击

研究人员提出了多种提示注入攻击方法,如Universal and Transferable Adversarial Attacks、AutoDAN等。这些方法可以有效地绕过LLM的安全机制,产生有害输出。

后门攻击

后门攻击是指攻击者在LLM训练阶段植入后门,使模型在特定输入下产生预设的错误输出。相关研究包括:

  • BITE:通过迭代触发器注入实现文本后门攻击
  • 虚拟提示注入:在指令微调阶段注入后门

后门攻击难以检测,对LLM的长期安全构成严重威胁。

模型窃取

随着开源LLM的兴起,模型窃取也成为一个新的安全问题。攻击者可能通过API访问或其他方式,尝试重建或窃取专有LLM模型。

隐私泄露

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值