YOLOv7简介
YOLOv7是YOLO(You Only Look Once)系列目标检测算法的最新版本,由Chien-Yao Wang、Alexey Bochkovskiy和Hong-Yuan Mark Liao于2022年7月提出。作为实时目标检测的最新突破,YOLOv7在速度和精度上都超越了之前的模型,为计算机视觉领域带来了新的可能性。
YOLOv7的主要特点
-
更高的精度:在MS COCO数据集上,YOLOv7达到了51.4% AP的精度,超过了之前的所有实时目标检测器。
-
更快的速度:YOLOv7可以在161 FPS的速度下运行,远超其他模型。
-
更高的效率:相比其他模型,YOLOv7减少了约40%的参数量和50%的计算量。
-
更强的通用性:YOLOv7不需要预训练权重,可以直接在小数据集上训练。
YOLOv7的创新点
YOLOv7的优异性能来源于多项创新:
1. 扩展高效层聚合网络(E-ELAN)
YOLOv7引入了E-ELAN模块,通过"扩展、打乱、合并基数"的方式,提高了网络的学习能力,同时不破坏原有的梯度路径。
2. 模型缩放技术
YOLOv7提出了一种新的复合模型缩放方法,可以同时调整网络的深度和宽度,保持模型架构的最优结构。