YOLOv7: 实时目标检测的新突破

YOLOv7简介

YOLOv7是YOLO(You Only Look Once)系列目标检测算法的最新版本,由Chien-Yao Wang、Alexey Bochkovskiy和Hong-Yuan Mark Liao于2022年7月提出。作为实时目标检测的最新突破,YOLOv7在速度和精度上都超越了之前的模型,为计算机视觉领域带来了新的可能性。

YOLOv7的主要特点

  1. 更高的精度:在MS COCO数据集上,YOLOv7达到了51.4% AP的精度,超过了之前的所有实时目标检测器。

  2. 更快的速度:YOLOv7可以在161 FPS的速度下运行,远超其他模型。

  3. 更高的效率:相比其他模型,YOLOv7减少了约40%的参数量和50%的计算量。

  4. 更强的通用性:YOLOv7不需要预训练权重,可以直接在小数据集上训练。

YOLOv7性能对比图

YOLOv7的创新点

YOLOv7的优异性能来源于多项创新:

1. 扩展高效层聚合网络(E-ELAN)

YOLOv7引入了E-ELAN模块,通过"扩展、打乱、合并基数"的方式,提高了网络的学习能力,同时不破坏原有的梯度路径。

2. 模型缩放技术

YOLOv7提出了一种新的复合模型缩放方法,可以同时调整网络的深度和宽度,保持模型架构的最优结构。

3. 计划

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值