以下主要介绍yolov7和yolov8的网络结构与创新点,文章的末尾有yolov7和yolov8创新点和网络架构进行汇报的PPT,可以通过网盘进行下载,同时在介绍中,我也会进行PPT内容的展示有需求再进行下载即可。
yolov7的网络由三部分组成:input,backbone和head,与yolov5不同的是,将neck层和head合称head层,实际上的功能是一样的,backbone用于提取特征,head用于预测。 yolov7输入端:自适应锚框计算、自适应图片缩放和数据增强方式.
下面介绍yolov7中的第一部分,也就是yolov7的主干网络backbone,backbone中有很多模块,下面介绍它的各个模块。
CBS模块:
- 从架构图中我们可以看出,CBS模块这里有三种颜色,三种颜色代表它们的卷积核(k)和步长(s)不同。
首先最浅的颜色,也就是第一个CBS模块的颜色,它是一个1x1的卷积,stride(步长为1)。
其次稍浅的颜色,也就是第二个CBS模块的颜色,它是一个3x3的卷积,stride(步长为1)。
最后最深的颜色,也就是第三个CBS模块的颜色,它是一个3x3的卷积,stride(步长为2)。 - 1x1的卷积主要用来改变通道数。
- 3x3的卷积,步长为1,主要用来特征提取。
- 3x3