yolov7和yolov8的创新点详解(附:汇报用的PPT)

本文深入剖析了YOLOv7和YOLOv8的网络结构,包括CBS模块、E-ELAN模块、MP模块以及它们的创新点。YOLOv7的backbone由1x1、3x3卷积组成,E-ELAN引入分组卷积增强特征学习。YOLOv8则提出计划的重参数化卷积。文末提供PPT下载,供进一步研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       以下主要介绍yolov7和yolov8的网络结构与创新点,文章的末尾有yolov7和yolov8创新点和网络架构进行汇报的PPT,可以通过网盘进行下载,同时在介绍中,我也会进行PPT内容的展示有需求再进行下载即可。

        yolov7的网络由三部分组成:input,backbone和head,与yolov5不同的是,将neck层和head合称head层,实际上的功能是一样的,backbone用于提取特征,head用于预测。 yolov7输入端:自适应锚框计算、自适应图片缩放和数据增强方式.

  下面介绍yolov7中的第一部分,也就是yolov7的主干网络backbone,backbone中有很多模块,下面介绍它的各个模块。

  CBS模块:

  • 从架构图中我们可以看出,CBS模块这里有三种颜色,三种颜色代表它们的卷积核(k)和步长(s)不同。
    首先最浅的颜色,也就是第一个CBS模块的颜色,它是一个1x1的卷积,stride(步长为1)。
    其次稍浅的颜色,也就是第二个CBS模块的颜色,它是一个3x3的卷积,stride(步长为1)。
    最后最深的颜色,也就是第三个CBS模块的颜色,它是一个3x3的卷积,stride(步长为2)。
  • 1x1的卷积主要用来改变通道数。
  • 3x3的卷积,步长为1,主要用来特征提取。
  • 3x3
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安安喜乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值