(计算机毕业选题推荐)【大数据分析】基于Spark哔哩哔哩数据分析舆情推荐系统 b站(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)(源码获取方式在作者主页)

源码获取方式在文章末尾

一、项目概述

      该项目旨在基于Spark大数据处理框架,对哔哩哔哩平台的数据进行舆情分析和推荐系统的设计与实现。通过对海量视频、弹幕、评论、点赞等数据的采集和处理,项目将运用自然语言处理(NLP)、情感分析、推荐算法等技术,分析用户对热点事件、话题或视频的态度和情感倾向,并结合用户行为和兴趣,提供个性化的内容推荐。利用爬虫技术获取哔哩哔哩的相关数据,并使用Spark进行数据清洗、转换和存储。通过NLP技术对用户评论和弹幕进行情感分析,识别热点事件和用户情感倾向。通过分析用户的观看记录、点赞、收藏等行为,提取用户偏好和兴趣。基于用户的兴趣和舆情分析结果,构建个性化的推荐系统,向用户推荐相关内容。利用Spark Streaming对实现弹幕和评论进行分析,实现实时舆情监控与推荐。
二、研究意义

      哔哩哔哩作为中国领先的二次元文化社区和视频平台,汇聚了大量的用户生成内容(UGC),如弹幕、评论、点赞等。通过对这些数据的舆情分析,能够更好地掌握公众对热门话题、事件的态度和意见,有助于平台及相关机构及时应对潜在的舆论危机,同时提升平台内容运营和用户体验的能力。传统的推荐系统主要基于用户的历史行为进行推荐,而舆情推荐系统则结合用户的行为与当前舆情态势,能够更加精准地推送符合用户当前兴趣和情感需求的内容。通过情感分析、热点话题分析等技术,推荐的内容不仅能满足用户的长期兴趣,还能根据热点实时调整,提高内容的相关性和吸引力。通过Spark等大数据处理工具的应用,项目展示了如何在大规模数据环境中进行高效的数据处理、分析和实时计算。此系统结合了分布式计算、实时数据处理与推荐算法,展示了大数据技术在社交平台中的具体应用场景,为其他类似平台的技术开发提供了参考和借鉴。
三、背景

      哔哩哔哩(Bilibili)是中国领先的二次元文化社区和综合性视频平台,聚集了大量年轻用户,拥有丰富的用户生成内容(UGC),如视频、弹幕、评论、点赞等。随着平台用户量和数据规模的持续增长,如何通过对这些庞大的数据进行分析,以深入了解用户需求、优化内容推荐和提升用户体验,成为一个重要的研究课题。随着互联网和社交媒体的发展,舆情分析逐渐成为商业、政治、公共关系等领域的重要工具。舆情分析通过对公众在社交平台上发布的信息(如评论、帖子、新闻、弹幕等)进行分析,能够迅速捕捉热点话题、了解公众情感和态度变化。这种技术被广泛应用于政府监控、企业品牌管理、危机应对等领域。而在哔哩哔哩平台上,舆情分析能够帮助平台运营者及时掌握用户对特定内容的态度和情绪,为内容推荐和用户互动提供数据支持。随着数据规模的指数级增长,传统的数据处理方法已经无法满足海量数据的分析需求。Spark等大数据处理框架的出现,提供了高效的分布式计算能力,能够快速处理海量的实时和历史数据,成为处理社交媒体平台数据的理想选择。通过Spark对哔哩哔哩平台海量用户数据进行分析,可以实现高效的数据清洗、存储和处理,为舆情分析和推荐系统提供可靠的数据支持。
四、国内外研究现状

国外研究现状:
      国外在大数据处理框架方面,Spark、Hadoop等技术体系已经被广泛应用于各类平台的数据分析工作中。Spark由于其强大的内存计算和分布式处理能力,在处理大规模社交媒体数据方面具有显著优势。像Netflix和LinkedIn等企业已将Spark作为其推荐系统和数据处理的核心技术平台,来进行实时的用户行为分析和内容推荐。
国内研究现状:
      国内在大数据技术的应用方面,与国外的差距在逐步缩小,尤其是在处理海量数据、实时数据分析方面,国内的企业和研究机构已经能够独立研发出适应本土需求的大数据处理系统。以阿里巴巴为代表的企业推出了自研的分布式计算平台(如MaxCompute、Flink等),它们在处理电商平台、社交媒体平台上的用户数据时表现出色。与此同时,国内高校也在积极研究如何在社交媒体数据中挖掘用户行为模式,并通过分布式计算框架进行高效分析。
五、开发技术介绍

前端框架:HTML,CSS,JAVASCRIPT,Echats
后端:Django
大数据处理框架:Spark
数据存储:HDFS、Hive
编程语言:Python/Scala
自然语言处理:NLP、情感分析
数据可视化:Echarts
六、算法介绍 

1.NLP舆情分析算法主要用于分析和理解社交媒体、新闻评论等文本数据中的情感倾向和公众情绪,以便帮助企业、政府或研究机构识别和监控舆情动向。以下是常用的NLP舆情分析算法的介绍:基于规则的情感分析方法通过构建情感词典,依据词语的情感极性来判断文本的情感倾向。常用的情感词典包括正面情感词和负面情感词。此方法简单高效,但需要对情感词典进行精心设计和维护。
情感词典法:
基于情感词典的算法使用预定义的情感词汇和规则,通过词典匹配来判断文本的情感倾向。典型的中文情感词典如“知网情感词典”或“复旦大学情感词典库”等。
流程:
分词:将输入的文本进行中文分词。
词性标注:识别出情感词、程度副词、否定词等。
通过预定义的规则,计算情感得分(正向/负向)。
优点:实现简单,不需要大量训练数据。
缺点:依赖于词典的全面性和准确性,对复杂句子处理能力有限。

2.基于用户的协同过滤(User-Based Collaborative Filtering)是一种推荐系统方法,通过找出与目标用户兴趣相似的其他用户,来推荐这些相似用户喜欢的物品。以下是基于用户的协同过滤的核心概念、计算方法和公式:
1. 基本原理
基于用户的协同过滤假设:如果用户A和用户B在过去对一组物品的评分相似,那么用户A可能会喜欢用户B喜欢的其他物品。
2. 相似用户的计算
首先,需要计算用户之间的相似度。常用的相似度度量包括:
      皮尔逊相关系数(Pearson Correlation Coefficient):

其中:
rikr_{ik}rik​ 和 rjkr_{jk}rjk​ 分别是用户 uiu_iui​ 和用户 uju_juj​ 对物品 kkk 的评分。
rˉi\bar{r}_irˉi​ 和 rˉj\bar{r}_jrˉj​ 分别是用户 uiu_iui​ 和用户 uju_juj​ 的平均评分。
IiI_iIi​ 和 IjI_jIj​ 分别是用户 uiu_iui​ 和用户 uju_juj​ 评分过的物品集合。
      余弦相似度(Cosine Similarity):

其中:
公式中的分子是用户 uiu_iui​ 和用户 uju_juj​ 在共同物品上的评分的点积。
分母是这两个用户在评分空间中的模长(即评分的平方和的平方根)。

七、数据库设计cbe404fb24b9468d80c3f20c56268b38.png

 

八、系统启动

虚拟机分布式启动指令1ac4a56c34314504818ef7303de0ad86.png

 

虚拟机初始化
网络配置编辑——虚拟网络编辑器849c8753bbcc4dafb9e50dc0837e9263.png

9f97cb164ace484882bee2ebc3155db2.png 

 


点击VM8修改子网IP与掩码d0a4099e8bee44048cbc56c8ce3da282.png

 

点击NAT设置 修改IP40b35c53ad8947959f70e1a64d866f65.png

 

 进入本地windows C:\Windows\System32\drivers\etc 打开hosts23478c0a5b3a4ecaa2434f91f99ffd12.png

 

加上最后三行6da294b02ef94339914a9f7ea6a203a7.png

 

导入虚拟机
文件-打开d1ce7b9ceb9a4be5bbab8848e5b87e65.png

 

打开相应的.ovf文件099cb76bb5b54264bd3eff0aa1ad1b74.png

 

取好node1名字 与 存放地址 点击确定导入 node2、3同理 只导入node1也可47adf65a575f4194a739b1cd16a66ba8.png

 

启动hdfs与sparkf151effd7f1b42fdbc643f51ba37d206.png

 

进入node1 hadoop用户 密码123456
右键打开terminal
输入文件中的 虚拟机启动语句bf1a0f7079ba45d6854a17b8c5a5cff6.png

 

一步步输入语句 启动spark 

引入远程虚拟环境 作分析 点击SSH841b3c22381a4c89bdec5542d085b02b.png

bc8fd61dcdc94fdf8883bb5a45fd6558.png 

9cf4aa068bf443cf84eef5fb44a825a3.png 

3113208b24424fa6b472907012220908.png 

九、项目展示 

 首页大屏1bad6b6a6e584ad4a6cf40f24fe85fa1.png登录/注册4c59f3fe9c8a4d60b2525028c681fb30.png
 薪资分析dbe390698a084d5bbdea992054a8f4a0.png
经验学历分析63d2c7a2d01d41c7aeaa59ad72058c43.png行业分析0e6fd686fd404e559a5452d249319eb0.png
城市分析5fc89d5f139e4beeb1401912091f2be8.png
 我的收藏a9ad7d5e020d40c2bd0c7510944fd665.png个人信息管理2a0f8b0e87af4db28065ba08f10ea7ef.png
 工作词云图f82e19e3619a447892db2708b87cc395.png
 职位推荐d7d69c2e5ac344aba91e5a1b46e575a7.png薪资预测7e975f12d2f546d7b96e4a9682c657f1.png
十、开发笔记

 爬虫笔记501f6f88691841859c2f74647a9ab007.png页面笔记e57205b2c056469da47ee0796a57d326.png

 

源码文档等资料获取方式 
需要全部项目资料(完整系统源码等资料),主页+即可。
需要全部项目资料(完整系统源码等资料),主页+即可。
需要全部项目资料(完整系统源码等资料),主页+即可。
需要全部项目资料(完整系统源码等资料),主页+即可。

 

 

 

 

### 基于Hadoop的B视频数据分析系统架构设计 #### 1. 技术选型与环境搭建 为了实现高效的数据处理和分析能力,该系统选用 Hadoop 生态圈中的多个组件来完成不同层次的任务需求。具体来说: - **数据存储层**:利用 HDFS (Hadoop Distributed File System) 来作为底层文件系统的支撑,能够提供高可靠性和扩展性的海量数据存储服务[^3]。 - **计算引擎层**:引入 Spark 或 MapReduce 进行大规模并行运算操作;考虑到实时性要求较高的场景下推荐使用 Apache Spark Streaming 处理流式数据输入。 - **资源调度管理层**:通过 YARN (Yet Another Resource Negotiator),可以有效地管理和分配集群内的各种硬件资源给不同的应用程序实例运行时所需。 - **交互查询接口**:对于上层应用而言,则可借助 Hive SQL 提供类SQL语法支持使得业务人员更容易理解和编写复杂查询逻辑;同时也兼容 Presto/Impala 等分布式SQL执行器用于加速特定类型的读取请求响应速度。 #### 2. 数据采集与预处理阶段 针对 Bilibili 平台上的公开 API 接口获取到原始 JSON 格式的元数据记录之后,在进入正式入库之前还需要经历一系列清洗转换流程以确保后续加工环节顺利开展: - 使用 Python 编写脚本来定期抓取目标网页内容或是调用官方提供的 RESTful Web Service 获取最新发布的多媒体素材详情; - 对收集回来的信息按照既定规则去除噪声项(如HTML标签)、填补缺失字段值、统一日期时间戳格式化表达方式等标准化措施; - 将经过初步整理后的半结构化文档序列化成 Parquet/ORC 文件形式保存至本地磁盘等待下一步传输动作发生前暂存起来备用。 ```python import requests from datetime import datetime, timezone import pyarrow.parquet as pq import pandas as pd def fetch_bilibili_data(api_url): response = requests.get(api_url) data = response.json() df = pd.DataFrame(data['data']) df['timestamp'] = datetime.now(timezone.utc).isoformat() table = pa.Table.from_pandas(df) pq.write_table(table, 'bilibili_videos.parquet') fetch_bilibili_data('https://api.bilibili.com/x/web-interface/newlist?ps=50&tid=0') ``` #### 3. ETL 流程定义及实施策略 ETL 是指 Extract(抽取), Transform(转换), Load(加载) 的缩写术语,这里主要指的是如何把来自外部源端点处获得的第一手资料导入内部仓库之中去的过程描述如下所示: - 利用 Flume/Nifi 工具链路负责监听指定目录下的新增文件事件触发后自动上传至远程服务器节点位置; - Sqoop 可帮助快速迁移关系型数据库表内存量较大的静态历史档案迁移到 NoSQL 类型的目标容器里边儿; - Oozie 调度作业计划安排每日定时启动批处理任务批次循环迭代直至全部完成为止。 #### 4. 数据挖掘建模实践指南 当完成了上述准备工作以后就可以着手准备建立预测模型了,这一步骤往往涉及到特征工程选取哪些维度属性参与训练过程最为合适?算法选择方面有哪些考量因素呢? - 特征提取部分可以从用户行为轨迹追踪路径长度统计量级分布规律出发寻找潜在关联模式线索; - 应用机器学习库 MLlib 中集成好的分类回归树 CART、随机森林 RF、GBDT 梯度提升决策树等多种经典方法论尝试解决实际问题挑战; - 结合 TensorFlow/Keras 开发深度神经网络DNN框架探索更加复杂的非线性映射关系表示可能性空间范围边界拓展研究方向。 #### 5. 可视化展示效果呈现手段探讨 最后但同样重要的一环就是怎样直观形象地向受众传达背后隐藏着的价值洞察力所在之处了——即报表图表图形界面友好程度决定了最终用户体验满意度高低水平差异表现出来: - Tableau PowerBI Qlik Sense 等商业智能 BI 解决方案提供了丰富的模板样式可供定制修改调整满足个性化偏好设定需求; - D3.js Plotly Bokeh Seaborn Matplotlib 等开源 JavaScript 绘图库允许开发者灵活自定义绘制任意形状大小颜色渐变动画特效增强视觉冲击力度吸引注意力停留更长时间间隔周期观察变化趋势走向特点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值