数据处理和分析之分类算法:逻辑回归(LogisticRegression):线性代数基础

数据处理和分析之分类算法:逻辑回归(LogisticRegression):线性代数基础

在这里插入图片描述

数据处理和分析之分类算法:逻辑回归 (Logistic Regression):线性代数基础

逻辑回归简介

逻辑回归与线性回归的区别

逻辑回归和线性回归虽然名字相似,但它们解决的问题类型完全不同。线性回归主要用于预测连续值,而逻辑回归则用于分类问题,尤其是二分类问题。逻辑回归通过使用Sigmoid函数(也称为Logistic函数)将线性回归的输出转换为概率值,从而实现分类。

Sigmoid函数

Sigmoid函数定义为:

σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+ez1

这个函数将任何实数映射到(0, 1)区间内,非常适合表示概率。

示例代码

下面是一个使用Python和NumPy实现Sigmoid函数的例子:

import numpy as np

def sigmoid(z):
    """
    计算Sigmoid函数的值。
    
    参数:
    z -- 任何实数或实数数组。
    
    返回:
    s -- Sigmoid函数的输出,范围在(0, 1)。
    """
    s = 1 / (1 + np.exp(-z))
    return s

# 测试Sigmoid函数
z = np.array([1, 2, 3])
print("Sigmoid函数的输出为:", sigmoid(z))

逻辑回归的应用场景

逻辑回归广泛应用于各种分类问题,包括但不限于:

  • 医疗诊断:预测患者是否患有某种疾病。
  • 信用评分:评估贷款申请人的信用风险。
  • 市场营销:预测客户是否会购买产品或服务。
  • 社交媒体:预测用户是否会点击广告或分享内容。

逻辑回归通过学习数据中的特征与类别之间的关系,可以为每个类别提供一个概率预测,这在需要评估不确定性或风险的场景中非常有用。

逻辑回归的线性代数基础

逻辑回归的模型可以表示为:

y = σ ( w T x + b ) y = \sigma(w^T x + b) y=σ(wTx+b)

其中, y y y是预测的概率, w w w是权重向量, x x x是特征向量, b b b是偏置项, σ \sigma σ是Sigmoid函数。

矩阵表示

在处理多条数据时,逻辑回归的计算可以使用矩阵表示来简化。假设我们有 m m m条数据,每条数据有 n n n个特征,我们可以将所有数据的特征表示为一个 m × n m \times n m×n的矩阵 X X X,将权重表示为一个 n × 1 n \times 1 n×1的向量 w w w,将偏置项表示为一个 1 × 1 1 \times 1 1×1的标量 b b b,将预测的概率表示为一个 m × 1 m \times 1 m×1的向量 y y y

示例代码

下面是一个使用Python和NumPy实现逻辑回归预测的矩阵表示的例子:

import numpy as np

def predict(X, w, b):
    """
    使用逻辑回归模型预测类别概率。
    
    参数:
    X -- 特征矩阵,形状为(m, n)。
    w -- 权重向量,形状为(n, 1)。
    b -- 偏置项,标量。
    
    返回:
    y -- 预测的概率向量,形状为(m, 1)。
    """
    z = np.dot(X, w) + b
    y = sigmoid(z)
    return y

# 测试数据
X = np.array([[1, 2], [3, 4], [5, 6]])
w = np.array([[0.1], [0.2]])
b = 0.3

# 预测
y = predict(X, w, b)
print("预测的概率为:\n", y)

损失函数

逻辑回归的损失函数通常使用二元交叉熵损失(Binary Cross-Entropy Loss),它衡量模型预测的概率与实际标签之间的差异。对于单个样本,损失函数定义为:

L ( y ^ , y ) = − y log ⁡ ( y ^ ) − ( 1 − y ) log ⁡ ( 1 − y ^ ) L(\hat{y}, y) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y}) L(y^,y)=ylog(y^)(1y)log(1y^)

其中, y ^ \hat{y} y^是预测的概率, y y y是实际的标签(0或1)。

示例代码

下面是一个使用Python和NumPy实现二元交叉熵损失函数的例子:

def binary_cross_entropy(y_true, y_pred):
    """
    计算二元交叉熵损失。
    
    参数:
    y_true -- 实际标签向量,形状为(m, 1)。
    y_pred -- 预测概率向量,形状为(m, 1)。
    
    返回:
    loss -- 二元交叉熵损失的平均值。
    """
    m = y_true.shape[0]
    loss = -np.sum(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred)) / m
    return loss

# 测试数据
y_true = np.array([[1], [0], [1]])
y_pred = np.array([[0.9], [0.1], [0.8]])

# 计算损失
loss = binary_cross_entropy(y_true, y_pred)
print("二元交叉熵损失为:", loss)

梯度下降

逻辑回归的参数优化通常使用梯度下降算法。梯度下降通过计算损失函数关于权重和偏置的梯度,然后更新参数以减小损失。

示例代码

下面是一个使用Python和NumPy实现梯度下降更新逻辑回归参数的例子:

def gradient_descent(X, y_true, y_pred, w, b, learning_rate):
    """
    使用梯度下降更新逻辑回归的参数。
    
    参数:
    X -- 特征矩阵,形状为(m, n)。
    y_true -- 实际标签向量,形状为(m, 1)。
    y_pred -- 预测概率向量,形状为(m, 1)。
    w -- 权重向量,形状为(n, 1)。
    b -- 偏置项,标量。
    learning_rate -- 学习率,标量。
    
    返回:
    w -- 更新后的权重向量。
    b -- 更新后的偏置项。
    """
    m = X.shape[0]
    dw = np.dot(X.T, (y_pred - y_true)) / m
    db = np.sum(y_pred - y_true) / m
    w = w - learning_rate * dw
    b = b - learning_rate * db
    return w, b

# 测试数据
X = np.array([[1, 2], [3, 4], [5, 6]])
y_true = np.array([[1], [0], [1]])
y_pred = np.array([[0.9], [0.1], [0.8]])
w = np.array([[0.1], [0.2]])
b = 0.3
learning_rate = 0.01

# 更新参数
w, b = gradient_descent(X, y_true, y_pred, w, b, learning_rate)
print("更新后的权重为:\n", w)
print("更新后的偏置为:", b)

通过以上代码示例,我们可以看到逻辑回归模型如何通过线性代数和概率理论来处理分类问题,以及如何使用梯度下降算法来优化模型参数。这些基础知识是理解和应用逻辑回归算法的关键。

数据处理和分析之分类算法:逻辑回归的线性代数基础

线性代数基础

向量和矩阵的概念

在数学中,向量是具有大小和方向的量,可以表示为一个有序的数列。例如,一个二维向量可以表示为 [ x 1 , x 2 ] [x_1, x_2] [x1,x2],其中 x 1 x_1 x1 x 2 x_2 x2分别是向量在 x 轴和 y 轴上的分量。向量在数据科学中常用于表示数据点的特征。

矩阵是由数列按一定规则排列成的矩形数组,可以看作是向量的集合。矩阵在数据处理和分析中扮演着核心角色,特别是在机器学习算法中,如逻辑回归。矩阵可以表示为 [ a b c d ] \begin{bmatrix} a & b \\ c & d \end{bmatrix} [acbd],其中 a , b , c , d a, b, c, d a,b,c,d是矩阵的元素。

向量和矩阵的运算

向量和矩阵的运算包括加法、减法、乘法、转置等,这些运算在逻辑回归算法中至关重要。

加法和减法

向量和矩阵的加法和减法是元素对元素的操作。例如,两个向量 v ⃗ = [ 1 , 2 ] \vec{v} = [1, 2] v =[1,2] w ⃗ = [ 3 , 4 ] \vec{w} = [3, 4] w =[3,4]的加法结果为 v ⃗ + w ⃗ = [ 1 + 3 , 2 + 4 ] = [ 4 , 6 ] \vec{v} + \vec{w} = [1+3, 2+4] = [4, 6] v +w =[1+3,2+4]=[4,6]

import numpy as np

# 向量加法示例
v = np.array([1, 2])
w = np.array([3, 4])
result = v + w
print("向量加法结果:", result)

# 矩阵加法示例
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
result_matrix = A + B
print("矩阵加法结果:\n", result_matrix)
乘法

向量和矩阵的乘法有几种形式,包括点积(内积)、叉积(仅适用于三维向量)、和矩阵乘法。

  • 点积:两个向量的点积是它们对应元素的乘积之和。例如,向量 v ⃗ = [ 1 , 2 ] \vec{v} = [1, 2] v =[1,2] w ⃗ = [ 3 , 4 ] \vec{w} = [3, 4] w =[3,4]的点积为 v ⃗ ⋅ w ⃗ = 1 ∗ 3 + 2 ∗ 4 = 11 \vec{v} \cdot \vec{w} = 1*3 + 2*4 = 11 v w =13+24=11
# 向量点积示例
v = np.array([1, 2])
w = np.array([3, 4])
dot_product = np.dot(v, w)
print("向量点积结果:", dot_product)
  • 矩阵乘法:矩阵乘法是行与列的点积。例如,矩阵 A = [ 1 2 3 4 ] A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A=[1324]和矩阵 B = [ 5 6 7 8 ] B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} B=[5768]的乘法结果为 A B = [ 1 ∗ 5 + 2 ∗ 7 1 ∗ 6 + 2 ∗ 8 3 ∗ 5 + 4 ∗ 7 3 ∗ 6 + 4 ∗ 8 ] = [ 19 22 43 50 ] AB = \begin{bmatrix} 1*5 + 2*7 & 1*6 + 2*8 \\ 3*5 + 4*7 & 3*6 + 4*8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix} AB=[15+2735+4716+2836+48]=[19432250]
# 矩阵乘法示例
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
matrix_product = np.dot(A, B)
print("矩阵乘法结果:\n", matrix_product)
转置

转置是将矩阵的行变为列,列变为行的操作。例如,矩阵 A = [ 1 2 3 4 ] A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A=[1324]的转置为 A T = [ 1 3 2 4 ] A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} AT=[1234]

# 矩阵转置示例
A = np.array([[1, 2], [3, 4]])
transpose_A = A.T
print("矩阵转置结果:\n", transpose_A)
逆矩阵

逆矩阵是矩阵的逆操作,只有方阵且行列式不为零的矩阵才有逆矩阵。逆矩阵 A − 1 A^{-1} A1满足 A A − 1 = A − 1 A = I AA^{-1} = A^{-1}A = I AA1=A1A=I,其中 I I I是单位矩阵。

# 矩阵逆示例
A = np.array([[1, 2], [3, 4]])
inverse_A = np.linalg.inv(A)
print("矩阵逆结果:\n", inverse_A)
线性组合

线性组合是向量的加权和。例如,向量 v ⃗ = [ 1 , 2 ] \vec{v} = [1, 2] v =[1,2] w ⃗ = [ 3 , 4 ] \vec{w} = [3, 4] w =[3,4]的线性组合为 c v ⃗ + d w ⃗ c\vec{v} + d\vec{w} cv +dw ,其中 c c c d d d是标量。

# 线性组合示例
v = np.array([1, 2])
w = np.array([3, 4])
c = 2
d = 3
linear_combination = c*v + d*w
print("线性组合结果:", linear_combination)
线性独立

线性独立是指一组向量中没有一个向量可以表示为其他向量的线性组合。例如,向量 v ⃗ = [ 1 , 2 ] \vec{v} = [1, 2] v =[1,2] w ⃗ = [ 3 , 4 ] \vec{w} = [3, 4] w =[3,4]是线性独立的,因为无法找到标量 c c c d d d使得 c v ⃗ + d w ⃗ = 0 ⃗ c\vec{v} + d\vec{w} = \vec{0} cv +dw =0

线性空间

线性空间(或向量空间)是由一组向量和所有可能的线性组合构成的空间。在逻辑回归中,线性空间的概念用于理解决策边界和特征空间。

线性变换

线性变换是通过矩阵乘法改变向量或矩阵的运算。例如,矩阵 A A A作用于向量 v ⃗ \vec{v} v 可以表示为 A v ⃗ A\vec{v} Av

# 线性变换示例
A = np.array([[1, 2], [3, 4]])
v = np.array([1, 2])
transformed_v = np.dot(A, v)
print("线性变换结果:", transformed_v)
线性方程组

线性方程组是一组线性方程,可以表示为矩阵形式 A x = b Ax = b Ax=b,其中 A A A是系数矩阵, x x x是未知数向量, b b b是常数向量。在逻辑回归中,求解线性方程组是找到最佳参数的过程。

# 线性方程组示例
A = np.array([[1, 2], [3, 4]])
b = np.array([5, 6])
x = np.linalg.solve(A, b)
print("线性方程组解:", x)
线性回归与逻辑回归的联系

虽然逻辑回归主要用于分类问题,但其基础是线性回归。在逻辑回归中,我们使用线性组合的输出通过 Sigmoid 函数转换为概率,从而进行分类预测。

# 逻辑回归中的线性组合示例
import numpy as np

# 定义 Sigmoid 函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# 特征向量
X = np.array([1, 2, 3])
# 参数向量
theta = np.array([0.5, 0.4, 0.3])

# 线性组合
z = np.dot(theta, X)

# 通过 Sigmoid 函数转换为概率
probability = sigmoid(z)
print("预测概率:", probability)

通过上述代码示例,我们可以看到向量和矩阵的运算在逻辑回归中的应用,包括线性组合和 Sigmoid 函数的使用。这些基础的线性代数知识对于理解和实现逻辑回归算法至关重要。

数据处理和分析之分类算法:逻辑回归中的线性代数基础

1. 权重向量与特征矩阵

在逻辑回归中,我们使用线性代数的概念来表示和处理数据。数据集通常被组织成特征矩阵(Feature Matrix),每一行代表一个样本,每一列代表一个特征。权重向量(Weight Vector)则包含每个特征的权重,用于计算线性组合。

特征矩阵示例

假设我们有一个数据集,包含两个特征:年龄和收入,以及一个二分类目标变量:是否购买产品(1表示购买,0表示未购买)。数据集可以表示为以下特征矩阵:

| 年龄 | 收入 | 是否购买产品 |
|------|------|--------------|
| 25   | 50K  | 0            |
| 35   | 70K  | 1            |
| 45   | 90K  | 1            |
| 30   | 60K  | 0            |

在逻辑回归中,我们通常将特征矩阵表示为一个二维数组,其中年龄和收入被标准化或归一化处理,以确保它们在相同的尺度上。例如,使用Python的NumPy库,我们可以创建如下特征矩阵:

import numpy as np

# 特征矩阵
X = np.array([[25, 50], [35, 70], [45, 90], [30, 60]])

# 目标变量向量
y = np.array([0, 1, 1, 0])

权重向量示例

权重向量表示每个特征对预测结果的贡献度。在上述例子中,我们可能有如下权重向量:

# 权重向量
weights = np.array([0.1, 0.2])

2. 线性组合与Sigmoid函数

逻辑回归的核心是计算线性组合,然后通过Sigmoid函数将结果转换为概率。线性组合是权重向量和特征矩阵的点积(Dot Product),它将每个特征乘以其对应的权重,然后求和。

线性组合示例

使用Python和NumPy,我们可以计算线性组合:

# 线性组合
linear_combination = np.dot(X, weights)
print(linear_combination)

Sigmoid函数

Sigmoid函数(也称为Logistic函数)将线性组合的结果转换为0到1之间的概率值。函数定义如下:

σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+ez1

在Python中,我们可以定义Sigmoid函数如下:

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

Sigmoid函数应用示例

将线性组合的结果通过Sigmoid函数转换为概率:

# 应用Sigmoid函数
probabilities = sigmoid(linear_combination)
print(probabilities)

通过以上步骤,我们理解了逻辑回归中线性代数的基本应用,包括如何使用特征矩阵和权重向量计算线性组合,以及如何通过Sigmoid函数将线性组合的结果转换为概率。这些概念是逻辑回归算法的核心,掌握它们对于理解和实现逻辑回归至关重要。

梯度下降法原理

梯度下降法的数学解释

梯度下降法是一种用于求解最小化问题的迭代优化算法,尤其在机器学习中用于寻找损失函数的最小值。在数学上,梯度是一个向量,它指向函数增长最快的方向。因此,通过计算梯度并沿着其相反方向移动,我们可以逐步接近函数的最小值点。

梯度的计算

对于一个函数 f ( x ) f(x) f(x),其梯度 ∇ f ( x ) \nabla f(x) f(x)在多变量情况下是一个向量,每个分量是函数关于每个变量的偏导数。例如,对于一个二元函数 f ( x , y ) f(x, y) f(x,y),其梯度为:

∇ f ( x , y ) = ( ∂ f ∂ x , ∂ f ∂ y ) \nabla f(x, y) = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) f(x,y)=(xf,yf)

梯度下降迭代公式

梯度下降的迭代公式为:

x ( t + 1 ) = x ( t ) − α ∇ f ( x ( t ) ) x^{(t+1)} = x^{(t)} - \alpha \nabla f(x^{(t)}) x(t+1)=x(t)αf(x(t))

其中, x ( t ) x^{(t)} x(t)是第 t t t次迭代的位置, α \alpha α是学习率, ∇ f ( x ( t ) ) \nabla f(x^{(t)}) f(x(t))是当前位置的梯度。

学习率的选择

学习率 α \alpha α的选择至关重要。如果 α \alpha α太小,算法收敛速度会很慢;如果 α \alpha α太大,算法可能不会收敛,甚至会发散。

梯度下降法在逻辑回归中的应用

逻辑回归是一种用于分类问题的线性模型,其输出是事件发生的概率。在逻辑回归中,我们使用Sigmoid函数将线性模型的输出转换为概率:

P ( y = 1 ∣ x ) = σ ( w T x + b ) = 1 1 + e − ( w T x + b ) P(y=1|x) = \sigma(w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}} P(y=1∣x)=σ(wTx+b)=1+e(wTx+b)1

其中, w w w是权重向量, b b b是偏置项, x x x是输入向量。

损失函数

逻辑回归的损失函数通常采用对数损失函数,对于一个样本 ( x , y ) (x, y) (x,y),其损失函数为:

L ( w , b ; x , y ) = − y log ⁡ ( σ ( w T x + b ) ) − ( 1 − y ) log ⁡ ( 1 − σ ( w T x + b ) ) L(w, b; x, y) = -y \log(\sigma(w^T x + b)) - (1-y) \log(1-\sigma(w^T x + b)) L(w,b;x,y)=ylog(σ(wTx+b))(1y)log(1σ(wTx+b))

梯度计算

对于损失函数 L ( w , b ; x , y ) L(w, b; x, y) L(w,b;x,y),我们计算其关于 w w w b b b的梯度,用于梯度下降的迭代更新。

示例代码

下面是一个使用Python和NumPy实现逻辑回归梯度下降的示例:

import numpy as np

# Sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# 损失函数
def loss(w, b, x, y):
    z = np.dot(x, w) + b
    y_hat = sigmoid(z)
    return -np.mean(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat))

# 梯度计算
def gradient(w, b, x, y):
    z = np.dot(x, w) + b
    y_hat = sigmoid(z)
    dw = np.dot(x.T, (y_hat - y)) / y.size
    db = np.mean(y_hat - y)
    return dw, db

# 梯度下降
def gradient_descent(x, y, w_init, b_init, learning_rate, num_iters):
    w = w_init
    b = b_init
    for i in range(num_iters):
        dw, db = gradient(w, b, x, y)
        w -= learning_rate * dw
        b -= learning_rate * db
    return w, b

# 示例数据
x = np.array([[1, 2], [2, 3], [3, 4], [4, 5]])
y = np.array([0, 0, 1, 1])

# 初始化参数
w_init = np.zeros(x.shape[1])
b_init = 0

# 学习率和迭代次数
learning_rate = 0.1
num_iters = 1000

# 运行梯度下降
w, b = gradient_descent(x, y, w_init, b_init, learning_rate, num_iters)
print("Optimized w:", w)
print("Optimized b:", b)

代码解释

  1. Sigmoid函数:将线性模型的输出转换为概率。
  2. 损失函数:计算模型预测与实际标签之间的差异。
  3. 梯度计算:根据损失函数计算权重 w w w和偏置 b b b的梯度。
  4. 梯度下降:使用梯度和学习率更新权重和偏置,迭代进行直到达到指定的迭代次数。
  5. 示例数据:创建一个简单的2D数据集,其中 x x x是特征, y y y是标签。
  6. 初始化参数:权重 w w w和偏置 b b b的初始值。
  7. 运行梯度下降:调用梯度下降函数,输出优化后的权重和偏置。

通过这个示例,我们可以看到梯度下降法在逻辑回归中的具体应用,以及如何通过迭代更新权重和偏置来最小化损失函数。

逻辑回归的代价函数

代价函数的定义

逻辑回归是一种用于解决分类问题的统计学方法,尤其适用于二分类问题。在逻辑回归中,我们使用Sigmoid函数(也称为Logistic函数)来预测事件发生的概率。Sigmoid函数定义如下:

σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+ez1

其中, z z z是输入值, σ ( z ) \sigma(z) σ(z)是输出的概率值。当 z z z为0时, σ ( z ) = 0.5 \sigma(z) = 0.5 σ(z)=0.5;当 z z z趋向于正无穷时, σ ( z ) \sigma(z) σ(z)趋向于1;当 z z z趋向于负无穷时, σ ( z ) \sigma(z) σ(z)趋向于0。

在逻辑回归中,我们通过以下公式计算预测概率:

y ^ = σ ( w T x + b ) \hat{y} = \sigma(w^T x + b) y^=σ(wTx+b)

其中, y ^ \hat{y} y^是预测概率, w w w是权重向量, x x x是特征向量, b b b是偏置项。

代价函数(Cost Function)用于衡量模型预测结果与实际结果之间的差距。在逻辑回归中,我们使用交叉熵损失函数(Cross-Entropy Loss Function)作为代价函数,因为它能够更好地处理概率预测问题。交叉熵损失函数定义如下:

对于单个样本,代价函数为:

J ( w , b ) = − y log ⁡ ( y ^ ) − ( 1 − y ) log ⁡ ( 1 − y ^ ) J(w, b) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y}) J(w,b)=ylog(y^)(1y)log(1y^)

其中, y y y是实际标签(0或1), y ^ \hat{y} y^是预测概率。

对于整个数据集,平均代价函数为:

J ( w , b ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( y ^ ( i ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − y ^ ( i ) ) ] J(w, b) = \frac{1}{m} \sum_{i=1}^{m} [-y^{(i)} \log(\hat{y}^{(i)}) - (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})] J(w,b)=m1i=1m[y(i)log(y^(i))(1y(i))log(1y^(i))]

其中, m m m是样本数量, y ( i ) y^{(i)} y(i) y ^ ( i ) \hat{y}^{(i)} y^(i)分别是第 i i i个样本的实际标签和预测概率。

示例代码

假设我们有以下数据集:

x1x2y
121
230
341
450

权重向量 w = [ 0.1 , 0.2 ] w = [0.1, 0.2] w=[0.1,0.2],偏置项 b = 0.3 b = 0.3 b=0.3

import numpy as np

# 定义Sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# 定义代价函数
def cost_function(w, b, X, y):
    m = X.shape[0]
    predictions = sigmoid(np.dot(X, w) + b)
    cost = (-1 / m) * np.sum(y * np.log(predictions) + (1 - y) * np.log(1 - predictions))
    return cost

# 数据集
X = np.array([[1, 2], [2, 3], [3, 4], [4, 5]])
y = np.array([1, 0, 1, 0])

# 权重向量和偏置项
w = np.array([0.1, 0.2])
b = 0.3

# 计算代价函数
cost = cost_function(w, b, X, y)
print("代价函数值:", cost)

代价函数的优化

代价函数的优化是通过梯度下降算法(Gradient Descent Algorithm)来实现的。梯度下降算法是一种迭代优化算法,用于找到代价函数的最小值点。在每次迭代中,我们计算代价函数关于权重向量 w w w和偏置项 b b b的梯度,然后更新 w w w b b b,直到代价函数收敛到最小值。

代价函数关于权重向量 w w w的梯度为:

∂ J ∂ w = 1 m X T ( σ ( X w + b ) − y ) \frac{\partial J}{\partial w} = \frac{1}{m} X^T (\sigma(Xw + b) - y) wJ=m1XT(σ(Xw+b)y)

代价函数关于偏置项 b b b的梯度为:

∂ J ∂ b = 1 m ∑ i = 1 m ( σ ( X w + b ) − y ) \frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (\sigma(Xw + b) - y) bJ=m1i=1m(σ(Xw+b)y)

示例代码

使用梯度下降算法优化代价函数:

# 定义梯度下降算法
def gradient_descent(w, b, X, y, learning_rate, num_iterations):
    m = X.shape[0]
    cost_history = []

    for i in range(num_iterations):
        predictions = sigmoid(np.dot(X, w) + b)
        w_gradient = (1 / m) * np.dot(X.T, (predictions - y))
        b_gradient = (1 / m) * np.sum(predictions - y)

        w -= learning_rate * w_gradient
        b -= learning_rate * b_gradient

        cost = cost_function(w, b, X, y)
        cost_history.append(cost)

    return w, b, cost_history

# 学习率和迭代次数
learning_rate = 0.01
num_iterations = 1000

# 梯度下降优化
w_optimized, b_optimized, cost_history = gradient_descent(w, b, X, y, learning_rate, num_iterations)
print("优化后的权重向量:", w_optimized)
print("优化后的偏置项:", b_optimized)
print("最终代价函数值:", cost_history[-1])

在上述代码中,我们定义了梯度下降算法gradient_descent,它接受初始权重向量 w w w、偏置项 b b b、特征矩阵 X X X、标签向量 y y y、学习率learning_rate和迭代次数num_iterations作为输入。在每次迭代中,我们计算预测概率、梯度,并更新权重向量和偏置项。最后,我们返回优化后的权重向量、偏置项和代价函数的历史值。

通过梯度下降算法,我们可以找到使代价函数最小化的权重向量和偏置项,从而优化逻辑回归模型的性能。

正则化技术在逻辑回归中的应用

L1和L2正则化

L1正则化

L1正则化,也称为Lasso正则化,通过在损失函数中添加所有权重的绝对值之和来惩罚模型的复杂度。这种正则化技术倾向于产生稀疏的权重矩阵,即许多权重被设置为零。这有助于特征选择,因为模型会自动忽略不重要的特征。

原理

在逻辑回归中,L1正则化的目标函数可以表示为:
min ⁡ w , b 1 n ∑ i = 1 n log ⁡ ( 1 + exp ⁡ ( − y i ( w T x i + b ) ) ) + λ ∥ w ∥ 1 \min_{w, b} \frac{1}{n}\sum_{i=1}^{n} \log(1 + \exp(-y_i(w^Tx_i + b))) + \lambda\|w\|_1 w,bminn1i=1nlog(1+exp(yi(wTxi+b)))+λw1
其中, ∥ w ∥ 1 \|w\|_1 w1表示权重向量 w w w的L1范数,即所有权重的绝对值之和。

代码示例
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

# 生成数据集
X, y = make_classification(n_samples=100, n_features=10, n_informative=3, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 使用L1正则化训练逻辑回归模型
clf = LogisticRegression(penalty='l1', solver='liblinear', C=1.0)
clf.fit(X_train, y_train)

# 输出非零权重的特征
non_zero_features = np.where(clf.coef_ != 0)[1]
print("非零权重特征:", non_zero_features)

L2正则化

L2正则化,也称为Ridge正则化,通过在损失函数中添加所有权重的平方和来惩罚模型的复杂度。这种正则化技术倾向于产生较小但非零的权重,有助于防止过拟合。

原理

在逻辑回归中,L2正则化的目标函数可以表示为:
min ⁡ w , b 1 n ∑ i = 1 n log ⁡ ( 1 + exp ⁡ ( − y i ( w T x i + b ) ) ) + λ 2 ∥ w ∥ 2 2 \min_{w, b} \frac{1}{n}\sum_{i=1}^{n} \log(1 + \exp(-y_i(w^Tx_i + b))) + \frac{\lambda}{2}\|w\|_2^2 w,bminn1i=1nlog(1+exp(yi(wTxi+b)))+2λw22
其中, ∥ w ∥ 2 2 \|w\|_2^2 w22表示权重向量 w w w的L2范数的平方,即所有权重的平方和。

代码示例
# 使用L2正则化训练逻辑回归模型
clf = LogisticRegression(penalty='l2', C=1.0)
clf.fit(X_train, y_train)

# 输出所有特征的权重
print("所有特征权重:", clf.coef_)

正则化在逻辑回归中的作用

正则化技术在逻辑回归中的作用主要是为了防止过拟合,提高模型的泛化能力。通过添加正则项,模型在训练过程中不仅会考虑最小化训练误差,还会考虑权重的大小,从而避免模型对训练数据的过度拟合。

L1正则化的作用

L1正则化通过产生稀疏的权重矩阵,有助于特征选择。在高维数据中,这可以显著减少模型的复杂度,提高计算效率,同时去除不重要的特征,减少过拟合的风险。

L2正则化的作用

L2正则化通过产生较小但非零的权重,有助于模型的稳定性。即使在特征之间存在多重共线性的情况下,L2正则化也能确保模型的权重分布更加均匀,避免某些特征的权重过大,从而提高模型的泛化能力。

总结

正则化技术是逻辑回归模型中不可或缺的一部分,它通过L1或L2正则化帮助模型在保持预测准确性的同时,减少过拟合的风险,提高模型的泛化能力和计算效率。在实际应用中,选择合适的正则化方法和正则化参数对于构建高效、稳定的分类模型至关重要。


请注意,上述代码示例使用了sklearn库中的LogisticRegression类,该类提供了内置的正则化选项。在实际应用中,可能需要根据具体问题调整正则化参数 λ \lambda λ(在sklearn中表示为C的倒数),以达到最佳的模型性能。

逻辑回归的实现步骤

数据预处理

数据预处理是逻辑回归模型训练前的关键步骤,它确保数据的质量和格式适合模型的输入。以下是一些常见的预处理技术:

缺失值处理

数据中可能包含缺失值,这些值需要被处理,否则可能影响模型的训练。常见的处理方法包括删除含有缺失值的记录、填充缺失值(如使用平均值、中位数或众数)。

数据标准化

逻辑回归模型对输入数据的尺度敏感,因此需要对数据进行标准化,使其具有相同的尺度。常用的方法有最小-最大缩放(MinMaxScaler)和标准化(StandardScaler)。

示例代码:使用sklearn进行数据标准化
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

# 加载数据集
data = load_iris()
X = data.data
y = data.target

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

类别特征编码

如果数据集中包含类别特征,需要将其转换为数值特征,以便逻辑回归模型能够处理。常见的编码方法有独热编码(One-Hot Encoding)和标签编码(Label Encoding)。

示例代码:使用pandas进行独热编码
import pandas as pd

# 假设df是一个包含类别特征的DataFrame
df = pd.DataFrame({
    'Gender': ['Male', 'Female', 'Male', 'Female'],
    'Age': [25, 30, 22, 28],
    'Income': [50000, 60000, 45000, 55000]
})

# 独热编码
df_encoded = pd.get_dummies(df, columns=['Gender'])

模型训练与评估

逻辑回归模型的训练涉及使用优化算法(如梯度下降)来最小化损失函数。模型评估则通过计算预测结果与实际结果之间的差异来衡量模型的性能。

模型训练

使用训练数据集来训练逻辑回归模型,通常需要设置模型的参数,如正则化类型(L1或L2)和正则化强度。

示例代码:使用sklearn训练逻辑回归模型
from sklearn.linear_model import LogisticRegression

# 创建逻辑回归模型实例
model = LogisticRegression(penalty='l2', C=1.0)

# 使用训练数据拟合模型
model.fit(X_train_scaled, y_train)

模型评估

评估逻辑回归模型的性能,可以使用准确率、精确率、召回率、F1分数等指标。此外,混淆矩阵可以提供更详细的分类结果信息。

示例代码:使用sklearn评估逻辑回归模型
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

# 预测测试集
y_pred = model.predict(X_test_scaled)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

# 输出分类报告
report = classification_report(y_test, y_pred)
print('Classification Report:')
print(report)

# 输出混淆矩阵
matrix = confusion_matrix(y_test, y_pred)
print('Confusion Matrix:')
print(matrix)

模型调优

通过调整模型参数,如正则化强度,可以优化逻辑回归模型的性能。交叉验证是一种常用的技术,用于在多个数据子集上评估模型,以选择最佳参数。

示例代码:使用sklearn进行模型调优
from sklearn.model_selection import GridSearchCV

# 定义参数网格
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}

# 创建逻辑回归模型实例
model = LogisticRegression(penalty='l2')

# 使用网格搜索进行交叉验证
grid_search = GridSearchCV(model, param_grid, cv=5)
grid_search.fit(X_train_scaled, y_train)

# 输出最佳参数
print(f'Best parameter: {grid_search.best_params_}')

通过上述步骤,可以有效地实现逻辑回归模型,从数据预处理到模型训练和评估,确保模型的准确性和可靠性。

案例分析与实践

二分类问题的逻辑回归应用

逻辑回归是一种广泛应用于二分类问题的统计学方法,尽管其名称中包含“回归”一词,但实际上它是一种分类算法。逻辑回归的核心在于使用Sigmoid函数(也称为Logistic函数)将线性模型的输出转换为概率值,从而实现对事件发生的可能性进行预测。

Sigmoid函数

Sigmoid函数定义为:
σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+ez1

这个函数将任何实数映射到(0, 1)区间内,非常适合表示概率。

模型训练

逻辑回归模型的训练目标是找到一组参数,使得模型对训练数据的预测尽可能准确。这通常通过最大似然估计或梯度下降等优化算法实现。

示例代码

下面是一个使用Python和scikit-learn库进行逻辑回归分类的示例:

import numpy as np
from sklearn.datasets import make_blobs
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 生成二分类数据
X, y = make_blobs(n_samples=100, centers=2, random_state=4, cluster_std=1.5)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4)

# 创建逻辑回归模型
model = LogisticRegression(solver='lbfgs')

# 训练模型
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"模型准确率: {accuracy}")

数据样例

在上述代码中,我们使用make_blobs函数生成了100个样本,分为两个中心,代表两个不同的类别。X是一个形状为(100, 2)的数组,代表每个样本的两个特征;y是一个形状为(100,)的数组,代表每个样本的类别标签。

解释

在这个示例中,我们首先生成了二分类数据,然后使用LogisticRegression类创建了一个逻辑回归模型。通过调用fit方法,模型学习了数据中的模式。最后,我们使用predict方法对测试数据进行预测,并通过accuracy_score计算了模型的准确率。

多分类问题的逻辑回归扩展

逻辑回归可以扩展到多分类问题,这通常通过“一对多”(One-vs-Rest, OvR)或“一对一”(One-vs-One, OvO)策略实现。在OvR策略中,为每个类别训练一个逻辑回归模型,将该类别与所有其他类别区分开来。在OvO策略中,为每一对类别训练一个模型,最终通过投票机制决定最终类别。

示例代码

下面是一个使用scikit-learn库进行多分类逻辑回归的示例:

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载Iris数据集
data = load_iris()
X = data.data
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=4)

# 创建逻辑回归模型
model = LogisticRegression(multi_class='multinomial', solver='lbfgs')

# 训练模型
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"模型准确率: {accuracy}")

数据样例

在这个示例中,我们使用了Iris数据集,它包含了150个样本,每个样本有4个特征,代表了三种不同类型的鸢尾花。X是一个形状为(150, 4)的数组,y是一个形状为(150,)的数组,包含三个类别的标签。

解释

在这个多分类示例中,我们使用了Iris数据集,并通过LogisticRegression类创建了一个逻辑回归模型,设置multi_class参数为multinomial,以实现多分类。模型通过fit方法学习数据,然后使用predict方法对测试数据进行预测,最后通过accuracy_score计算模型的准确率。

逻辑回归在处理分类问题时,尤其是当特征与类别之间存在线性关系时,表现得非常有效。通过上述示例,我们可以看到逻辑回归在二分类和多分类问题中的应用,以及如何使用Python和scikit-learn库来实现这些模型。

逻辑回归的评估指标

在分类算法中,逻辑回归(Logistic Regression)是一种广泛使用的线性模型,尤其适用于二分类问题。评估逻辑回归模型的性能,通常会使用几种不同的指标,以全面理解模型的预测能力。本教程将深入探讨两种关键的评估指标:准确率与召回率,以及ROC曲线与AUC值。

准确率与召回率

准确率

准确率(Accuracy)是分类模型中最直观的评估指标,它衡量的是模型正确分类的样本数占总样本数的比例。准确率的计算公式如下:

A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac{TP + TN}{TP + TN + FP + FN} Accuracy=TP+TN+FP+FNTP+TN

其中:

  • TP(True Positive):真正例,即模型正确预测为正例的样本数。
  • TN(True Negative):真反例,即模型正确预测为反例的样本数。
  • FP(False Positive):假正例,即模型错误地预测为正例的样本数。
  • FN(False Negative):假反例,即模型错误地预测为反例的样本数。

召回率

召回率(Recall)关注的是模型识别出所有实际正例的能力,计算公式如下:

R e c a l l = T P T P + F N Recall = \frac{TP}{TP + FN} Recall=TP+FNTP

召回率越高,表示模型识别出的正例越多,但可能同时也会有较高的假正例。

示例代码

假设我们有以下预测结果和实际标签:

实际标签预测标签
11
00
10
11
01
# 导入必要的库
from sklearn.metrics import accuracy_score, recall_score

# 实际标签
y_true = [1, 0, 1, 1, 0]

# 预测标签
y_pred = [1, 0, 0, 1, 1]

# 计算准确率
accuracy = accuracy_score(y_true, y_pred)
print(f"准确率: {accuracy}")

# 计算召回率
recall = recall_score(y_true, y_pred)
print(f"召回率: {recall}")

解释

在上述示例中,准确率计算为0.6,召回率计算为0.67。准确率较低是因为模型在预测中犯了较多的错误,而召回率较高则表明模型在识别正例时表现较好,尽管也存在一些假正例。

ROC曲线与AUC值

ROC曲线

ROC(Receiver Operating Characteristic)曲线是一种用于评估分类模型性能的图形表示,它以假正例率(False Positive Rate, FPR)为横轴,真正例率(True Positive Rate, TPR)为纵轴绘制。ROC曲线可以帮助我们理解模型在不同阈值下的性能。

AUC值

AUC(Area Under the Curve)是ROC曲线下的面积,其值范围在0到1之间。AUC值越高,表示模型的分类性能越好。

示例代码

假设我们有以下预测概率和实际标签:

实际标签预测概率
10.9
00.1
10.6
10.8
00.4
# 导入必要的库
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

# 实际标签
y_true = [1, 0, 1, 1, 0]

# 预测概率
y_scores = [0.9, 0.1, 0.6, 0.8, 0.4]

# 计算ROC曲线
fpr, tpr, thresholds = roc_curve(y_true, y_scores)

# 计算AUC值
roc_auc = auc(fpr, tpr)
print(f"AUC值: {roc_auc}")

# 绘制ROC曲线
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('假正例率')
plt.ylabel('真正例率')
plt.title('逻辑回归的ROC曲线')
plt.legend(loc="lower right")
plt.show()

解释

在示例中,我们首先计算了ROC曲线的各个点,然后计算了AUC值。最后,我们绘制了ROC曲线,直观地展示了模型在不同阈值下的性能。AUC值为0.8,表明模型具有较好的分类能力。

通过上述指标,我们可以更全面地评估逻辑回归模型的性能,理解其在不同场景下的适用性和局限性。

逻辑回归的局限性与改进

逻辑回归的假设限制

逻辑回归(Logistic Regression)作为统计学中的一种分类算法,主要用于预测二分类问题。其核心思想是通过一个Sigmoid函数将线性回归的输出转换为概率值,从而实现分类。然而,逻辑回归在实际应用中存在一些假设限制,这些限制可能影响其预测性能和适用范围。

线性可分假设

逻辑回归假设数据是线性可分的,即存在一个线性边界能够将不同类别的数据分开。然而,在现实世界中,许多数据集并不满足这一假设,数据点可能分布在复杂的非线性边界周围。例如,考虑一个二分类问题,其中两类数据点分别围绕两个不同的圆心分布,形成两个不相交的圆。在这种情况下,逻辑回归将无法找到一个合适的线性边界来正确分类所有数据点。

独立同分布假设

逻辑回归还假设特征之间是独立的,并且所有观测数据都来自同一分布。这意味着模型在预测时不会考虑特征之间的相互作用。例如,在预测疾病风险时,如果模型只考虑年龄和血压两个特征,而忽略了它们之间的相互影响(如高血压在老年人中更常见),那么模型的预测准确性可能会受到影响。

等方差性假设

逻辑回归还假设误差项具有恒定的方差,即误差项的方差不随预测变量的变化而变化。然而,在实际数据中,误差项的方差可能随预测变量的增加而增加,这种现象被称为异方差性。例如,在房价预测中,高价值房屋的预测误差可能比低价值房屋的预测误差更大,这违反了逻辑回归的等方差性假设。

改进逻辑回归的方法

面对逻辑回归的假设限制,有多种方法可以改进模型,以提高其在复杂数据集上的表现。

使用非线性特征

为了解决线性可分假设的限制,可以引入非线性特征到模型中。例如,可以使用多项式特征,将原始特征的平方、立方等加入到模型中,以捕捉数据中的非线性关系。在Python的scikit-learn库中,可以使用PolynomialFeatures类来生成多项式特征。

from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

# 创建多项式特征生成器
poly = PolynomialFeatures(degree=2)

# 创建逻辑回归模型
logreg = LogisticRegression()

# 创建管道,先生成多项式特征,然后应用逻辑回归
pipeline = Pipeline([('poly', poly), ('logreg', logreg)])

# 使用管道拟合数据
pipeline.fit(X_train, y_train)

# 使用管道进行预测
predictions = pipeline.predict(X_test)

引入正则化

正则化是另一种改进逻辑回归的方法,它通过在损失函数中添加一个惩罚项来防止模型过拟合。正则化可以减少模型的复杂度,使模型更加泛化。在scikit-learn中,可以通过设置penalty参数来应用L1或L2正则化。

from sklearn.linear_model import LogisticRegression

# 创建带有L2正则化的逻辑回归模型
logreg = LogisticRegression(penalty='l2', C=0.1)

# 拟合模型
logreg.fit(X_train, y_train)

# 预测
predictions = logreg.predict(X_test)

使用集成方法

集成方法,如随机森林(Random Forest)和梯度提升树(Gradient Boosting Tree),可以通过组合多个弱分类器来提高模型的预测性能。这些方法通常能够处理非线性关系和特征之间的相互作用,因此在逻辑回归表现不佳的情况下,可以尝试使用集成方法。

from sklearn.ensemble import RandomForestClassifier

# 创建随机森林分类器
rf = RandomForestClassifier(n_estimators=100)

# 拟合模型
rf.fit(X_train, y_train)

# 预测
predictions = rf.predict(X_test)

采用核技巧

核技巧(Kernel Trick)是解决非线性分类问题的一种有效方法。通过将数据映射到高维空间,核技巧可以使原本非线性可分的数据变得线性可分。在scikit-learn中,可以使用KernelSVC类来实现基于核技巧的支持向量机(SVM),这可以作为一种改进逻辑回归的替代方案。

from sklearn.svm import SVC

# 创建带有径向基函数核的SVM分类器
svm = SVC(kernel='rbf')

# 拟合模型
svm.fit(X_train, y_train)

# 预测
predictions = svm.predict(X_test)

考虑特征工程

特征工程是数据预处理的一个重要步骤,通过创建新的特征或转换现有特征,可以提高模型的预测能力。例如,可以创建特征的组合、交互项或使用特征选择技术来减少模型的复杂度。在scikit-learn中,可以使用FeatureUnionSelectKBest等类来实现特征工程。

from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import SelectKBest, f_classif

# 创建特征工程管道
feature_union = FeatureUnion([
    ('poly', PolynomialFeatures(degree=2)),
    ('select_best', SelectKBest(score_func=f_classif, k=5))
])

# 创建逻辑回归模型
logreg = LogisticRegression()

# 创建总管道
pipeline = Pipeline([('features', feature_union), ('logreg', logreg)])

# 拟合数据
pipeline.fit(X_train, y_train)

# 预测
predictions = pipeline.predict(X_test)

通过上述方法,可以有效地改进逻辑回归模型,使其在面对复杂数据集时具有更好的预测性能。然而,每种方法都有其适用场景和限制,因此在实际应用中,需要根据具体问题和数据特性来选择最合适的方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值