数据处理和分析之分类算法:朴素贝叶斯(Naive Bayes):多类别分类问题解决

数据处理和分析之分类算法:朴素贝叶斯(Naive Bayes):多类别分类问题解决

在这里插入图片描述

数据处理和分析之分类算法:朴素贝叶斯 (Naive Bayes):多类别分类问题解决

简介

朴素贝叶斯算法的基本原理

朴素贝叶斯分类器是一种基于概率论的分类方法,它利用了贝叶斯定理并假设特征之间相互独立。在多类别分类问题中,朴素贝叶斯算法通过计算给定特征下每个类别的概率,然后选择概率最大的类别作为预测结果。

贝叶斯定理

贝叶斯定理描述了在已知某些条件下,事件A发生的概率。公式如下:

P (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值