- 博客(70)
- 收藏
- 关注
原创 论文写作总结
此贴总结了我在闵帆老师的《论文写作》课程上学习到的一些论文写作的注意事项以及个人的课程心得体会。从中文的角度,"摘要"就是把论文重要的内容摘录出来;从英文的角度, Abstract 就是把重要的内容抽取出来。它通常包括三个部分:已有工作的评述,本文工作的描述,实验结果。有些期刊明确要求按照 Background, contribution, experiments 三个方面描述。按照闵老师的规划包括10句:(1)问题及其重要性(2)已有工作(3)已有工作的局限性(4)本文工作。
2022-12-14 22:17:01 666 1
原创 矩阵分析与应用+张贤达
Khatri-Rao积,广义Kronecker积,广义Kronecker积的性质,向量化函数、Kronecker乘幂和Khatri-Rao积的性质,Kronecker积的应用
2022-08-05 19:20:39 570
原创 矩阵分析与应用+张贤达
令rA=rank(A)和r=rank(B),则乘积矩阵AB的秩rAB=rank(AB)满足不等式rAB≤min{rA,rB}令A和B分别是p×q和q×n矩阵。不妨令rA≤rB,这意味着rA≤minq,n。对于矩阵A,假定p×p矩阵P和q×q矩阵Q分别是对A的列和行进行初等变换的非奇异矩阵,并使得PAQ=C=[Ir。...
2022-07-18 18:42:29 4007
原创 矩阵分析与应用+张贤达
一个n×nn\times nn×n正方矩阵AAA的行列式记作det(A)det(A)det(A)或∣A∣|A|∣A∣,定义为∣a11a12⋯a1na21a22⋯a2n⋮⋮⋮an1an2⋯ann∣\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots &a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & &\vdots \\ a_{
2022-07-14 19:11:23 317
原创 矩阵分析与应用+张贤达
任意一个正方矩阵AAA的二次型xHAxx^HAxxHAx是一实标量。以实矩阵为例,考查二次型xTAx=[x1x2x3][142−175−163][x1x2x3] x^TAx = \begin{bmatrix}x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix}1 & 4 & 2 \\-1 & 7 & 5 \\-1 & 6 & 3 \end{bmatrix}\begin{bmatrix}x_1 \\x_2 \\x_3\end{bmatrix}x
2022-07-12 20:25:07 557
原创 矩阵分析与应用+张贤达
**(1)**设W1W_1W1和W2W_2W2是向量空间VVV中的两个子空间,则它们的交集W1∩W2W_1 \cap W_2W1∩W2也是VVV的子空间。**(2)**设W1W_1W1和W2W_2W2是向量空间VVV中的子空间,则和W1+W2W_1+W_2W1+W2也是VVV的子空间。如前所述,线性无关的向量x1,x2,…,xnx_1,x_2,…,x_nx1,x2,…,xn构成nnn维向量子空间Span(x1,x2,…,xn)Span(x_1,x_2,…,x_n)Span(x1,x
2022-07-10 19:52:07 232
原创 矩阵分析与应用+张贤达
根据向量空间的定义易知,RnR^nRn空间的多个向量的所有线性组合也属于RnR^nRn。例如,考虑Rn的三个nx1向量R^n的三个nx1向量Rn的三个nx1向量x_1,x_2,x_3。对于实数。对于实数。对于实数a_1,a_2,a_3,由闭合性知,,由闭合性知,,由闭合性知,a_1x_1和和和a_2x_2均位于Euclideann空间均位于Euclidean n空间均位于Euclideann空间R^n。又由闭合性,。又由闭合性,。又由闭合性,a_1x_1$+a2x2+a_2x_2+a2x2在RnR^n
2022-07-08 20:18:38 313
原创 矩阵分析与应用+张贤达
若有一个向量a=[−3,8,6,−1]a=[-3,8,6,-1]a=[−3,8,6,−1]则:,则∣∣a∣∣2=110||a||_2=\sqrt{110}∣∣a∣∣2=110。L∞L_\inftyL∞范数为向量中每个元素绝对值的最大值,即∣∣a∣∣∞=max1≤x≤n∣xi∣||a||_\infty=\max_{1 \leq x \leq n}|x_i|∣∣a∣∣∞=max1≤x≤n∣xi∣,则∣∣a∣∣∞=8||a||_\infty=8∣∣a∣∣∞=8。2.向量的内积举例若有向
2022-07-04 21:04:05 1016
原创 矩阵分析与应用+张贤达
Lyapunov直接法是分析和构造线性和非线性控制系统最成功的工具之一。lpl_plp范数(Hölder范数)构成了一类特殊的向量范数,其中,Euclidean范数V(x)=∣∣Wx∣∣2=(∑i∣wiTx∣2)1/2V(x) = ||Wx||_2 =(\sum_i|w_i^Tx|^2)^{1/2} V(x)=∣∣Wx∣∣2=(i∑∣wiTx∣2)1/2和无穷范数v(x)=∣∣Wx∣∣∞=limp→∞(∑i∣wiTx∣p)1/p=maxiwiTxv(x) = ||Wx||_{\infty}
2022-07-02 20:11:10 247
原创 矩阵分析与应用+张贤达
模式分类考虑M个类型的模式,它们分别记作w1,w2,⋅⋅⋅,wMw_1,w_2,···,w_Mw1,w2,⋅⋅⋅,wM,编号随意。假定通过已知类型属性的观测样本,业已抽取出M个样本模式向量s1,s2,⋅⋅⋅,sMs_1,s_2,···,s_Ms1,s2,⋅⋅⋅,sM。给定一任意的未知模式向量xxx,希望判断它归属于哪一类模式。这个问题称为模式分类,它是模式识别的基本问题之一。模式分类的基本思想是将未知模式向量xxx同M个样本模式向量进行比对,看$x$4与哪一个样本模式向量最相似,并据此作出模
2022-06-30 19:56:59 557
原创 矩阵分析与应用+张贤达
若x(t)x(t)x(t)和y(t)y(t)y(t)分别是变量ttt的函数向量,则它们的内积定义为其中,变量t在[a,b]取值,且a
2022-06-28 21:37:06 230
原创 矩阵分析与应用+张贤达
根据元素取值方式的不同,向量分为常数向量、函数向量和随机向量。令VVV是复向量空间。函数:V∗V→C:V*V→C:V∗V→C称为向量xxx与yyy的内积,若对所有x,y,z∈Vx,y,z \in Vx,y,z∈V,以下内积公理满足:(1)≥0 ≥ 0≥0 (非负性) (1a)=0=0=0,当且仅当x=0x=0x=0 (正性) (2)=+=+...
2022-06-26 20:25:59 173
原创 矩阵分析与应用+张贤达
(1)概率密度函数由均值向量和协方差矩阵完全描述。(2)若正态随机向量的各个分量相互统计不相关,则它们也是统计独立的。(3)均值向量uxu_xux和协方差矩阵ГxГ_xГx的正态随机向量xxx的线性变换y(ξ)=Ax(ξ)y(ξ)=Ax(ξ)y(ξ)=Ax(ξ)仍然为正态随机向量,其概率密度函数为以信号处理中的加性噪声作为典型例子,说明实正态随机向量与复正态随机向量的统计表示的不同。在阵列处理、无线通信和多信道信号处理中,常常使用多个传感器或者陈元接收多路信号。在大多数情况下,可以假定每个传感器
2022-06-24 20:04:22 228
原创 矩阵分析与应用+张贤达
相关系数ρxy\rho_{xy}ρxy给出了两个随机变量x(ξ)x(ξ)x(ξ)和y(ξ)y(ξ)y(ξ)之间的相似程度的度量:ρxy\rho_{xy}ρxy越接近于零,随机变量ρxy\rho_{xy}ρxy的相似度越弱;反之,若越接近于1,则x(ξ)x(ξ)x(ξ)和y(ξ)y(ξ)y(ξ)的相似度越大。特别地,相关系数的两个极端值0和1有着重要的意义。由于ρxy=0\rho_{xy}=0ρxy=0意味着互协方差Cxy=0C_{xy}=0Cxy=0,这表明随机变量x(ξ)x(ξ)x(ξ)和
2022-06-22 20:38:09 229
原创 矩阵分析与应用+张贤达
随机向量的最重要统计运算为数学期望。考查m x1随机向量x(ξ)=[x1(ξ),x2(ξ),…,xm(ξ)]Tx(ξ)=[x_1(ξ),x_2(ξ),…, x_m(ξ)]^Tx(ξ)=[x1(ξ),x2(ξ),…,xm(ξ)]T。令随机变量xi(ξ)x_i(ξ)xi(ξ)的均值Exi(ξ)=μiE{x_i(ξ)}=μ_iExi(ξ)=μi,则随机向量的数学期望称为均值向量,记作μxμ_xμx,定义为式中,数学期望定义为均值向量的元素是随机向量各个元素的均值。均值向量是随机向量的一阶矩,
2022-06-20 20:30:26 1052
原创 矩阵分析与应用+张贤达
在概率论中,常称www为基本事件,A(∈F)A(\in F)A(∈F)为事件,FFF是事件的全体,而P(A)P(A)P(A)称为事件的概率。考虑概率空间(Ω,F,P)(\Omega,F,P)(Ω,F,P)。用Lp=Lp(Ω,F,P)Lp=Lp(\Omega,F,P)Lp=Lp(Ω,F,P)表示随机变量ξ=ξ(w)ξ=ξ(w)ξ=ξ(w)的空间,其中,称Lp(p>1)L_p(p>1)Lp(p>1)为Banach空间。在Banach空间中,起重要作用的是空间L=L(ω,F,P)L=L(\omega,F,
2022-06-18 01:56:47 240
原创 矩阵分析与应用+张贤达
令VVV和WWW分别是RmR^mRm和RnR^nRn的子空间,并且T:V→WT:V→WT:V→W是一映射。称TTT为线性映射或线性变换。若对v∈V,w∈Wv \in V,w \in Wv∈V,w∈W和所有标量ccc,映射TTT满足线性关系式T(v+w)=T(v)+T(w)T(v+w)=T(v)+T(w) T(v+w)=T(v)+T(w)和T(cv)=cT(v)T(cv)=cT(v) T(cv)=cT(v)定义中的两个条件也可合并写作T(c1v+c2w)=c1T(v)+c2T(w)T(c_1v+c
2022-06-12 20:07:44 234
原创 矩阵分析与应用+张贤达
复内积空间和实内积空间的某些范数性质有所不同。(1)∣∣0∣∣=0;∣∣x∣∣>0,∀x≠0;||0||=0;||x||>0,\forall x≠0;∣∣0∣∣=0;∣∣x∣∣>0,∀x=0;(2)∣∣cx∣∣=∣c∣∣∣x∣∣||cx||=|c| ||x||∣∣cx∣∣=∣c∣∣∣x∣∣,其中,∣c∣|c|∣c∣表示复数c的模;(3)极化恒等式(4)平行四边形法则(5)Cauchy-Schwartz不等式∣∣≤∣∣x∣∣∣∣y∣∣||≤||x|| ||y||∣...
2022-06-10 21:12:32 362
原创 矩阵分析与应用+张贤达
实内积空间是满足下列条件的实向量空间EEE,即对EEE中每一对向量x,yx,yx,y,存在向量x和yx和yx和y的内积服从:(1)⟨x,x⟩>0,∀x≠0\langle x,x \rangle > 0,\forall x \neq 0⟨x,x⟩>0,∀x=0,称为内积的严格正性或称内积是正定的,并且⟨x,boldmath⟩=0⇔x=0\langle x,boldmath \rangle = 0 \hArr x=0⟨x,boldmath⟩=0⇔x=0(2)⟨x,y⟩=⟨y...
2022-06-08 20:40:25 247
原创 矩阵分析与应用+张贤达
涉及矩阵行与行之间的简单运算称为初等行运算或初等行变换。只使用初等行运算,就可以解决矩阵方程求解、矩阵求逆和矩阵的基本空间的基向量构造等复杂问题。令矩阵AAA的m个行向量分别为r1,r2,⋅⋅⋅,rmr_1,r_2,···,r_mr1,r2,⋅⋅⋅,rm。(1)互换矩阵的任意两行,如rp↔rqr_p \leftrightarrow r_qrp↔rq,称为I\IotaI型初等行变换。(2)一行元素同乘一个非零常数α\alphaα,如αrp→rq\alpha r_p \rightarrow r_
2022-06-04 20:03:08 602
原创 矩阵分析与应用+张贤达
若A2=AA=AA^2 = AA = AA2=AA=A,矩阵An∗nA_{n*n}An∗n称为幂等矩阵.若A2=AA=IA^2 = AA = IA2=AA=I,矩阵An∗nA_{n*n}An∗n称为对合矩阵.两个矩阵AAA、BBB对应分量乘积之和,结果为一个标量,记作例如:A=[1234],B=[5678]A =\begin{bmatrix}1 & 2 \\ 3 & 4\\ \end{bmatrix},B=\begin{bmatrix}5 & 6 \\ 7 & 8\\ \end{bmatr...
2022-06-02 20:24:37 870
原创 矩阵分析与应用+张贤达
第一章 矩阵与线性方程组 (二)文章目录第一章 矩阵与线性方程组 (二)一、 矩阵的基本运算1. 复矩阵和实矩阵2. 转置、复数共轭3. 简单的代数运算3.1 两个矩阵的加法3.2 矩阵与一个标量的乘法3.3 矩阵与向量的乘积3.4 矩阵与矩阵的乘积4. 运算规则4.1 加法4.2 乘法5. 逆矩阵6. 矩阵的共轭、转置、共轭转置和逆矩阵的性质6.1 矩阵的共轭、转置和共轭转置满足分配律6.2 矩阵乘积的转置、共轭转置和逆矩阵满足关系式6.3 共轭、转置和共轭转置等符号均可与求逆符号交换6.4 对应任意矩
2022-05-31 21:24:39 1885
原创 卷积神经网络CNN
文章目录一、层级结构二、卷积计算层1. CNN怎么进行识别2. 什么是卷积3. 卷积图三、激励层与池化层1. ReLU激励层2. 池化pool层一、层级结构上图中CNN要做的事情是:给定一张图片,判断这张图片里具体是一个什么东西,输出一个结果。如果是车,那么是什么车。最左边最左边是数据输入层,对数据做一些处理,比如去均值(把输入数据各个维度都中心化为0,避免数据过多偏差,影响训练效果)、归一化(把所有的数据都归一到同样的范围)、PCA/白化等等。CNN只对训练集做“去均值”这一步。中间C
2022-05-29 21:17:17 93
原创 机器学习——Funk-SVD实现的矩阵分解
文章目录一、算法简介1.1 基本特性1.2 奇异值分解(Singular Value Decomposition,SVD)二、算法思路三、代码实现一、算法简介1.1 基本特性矩阵分解将一个矩阵分解为两个或者多个低维矩阵的,这两个低维矩阵能够代表原矩阵特性并且预测原矩阵中未知的特性——在推荐系统矩阵中的描述就是:通过评估低维矩阵乘积来拟合评分矩阵。图 1.如图1所示,一个有m个用户与n个项目的稀疏的矩阵Rm×nR_{m×n}Rm×n,第i行表示第i个用户对于每个项目的评分,第j列表示某个项目不同
2022-05-27 18:05:08 574
原创 固定激活函数的BP神经网络
学习来源:日撸 Java 三百行(71-80天,BP 神经网络)网络结构和数据通过几个数组确定. 需要结合程序的运行来理解它们./** * The value of each node that changes during the forward process. The first * dimension stands for the layer, and the second stands for the node. */ public double[][] layerNodeVal
2022-05-25 18:44:01 116
原创 BP神经网络基础类 (数据读取与基本结构)
文章目录一、BP神经网络是什么?二、神经网络的基础机制1. 正向传播1.1 神经元1.2 激活函数2.反向传播2.1 梯度下降三、数据读取与基本结构的实现一、BP神经网络是什么?BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。从结构上讲,BP网络具有输入层、隐藏层和输出层;从本质上讲,BP算法就是以网络误差平方为目标函数、采用梯度下降法来计算目标函数的最小值。二、神经网络的基础机制BP神经网络的计算过程由正向计算过程
2022-05-21 19:41:56 830
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人