数据处理和分析之分类算法:梯度提升机(GradientBoosting):机器学习基础

数据处理和分析之分类算法:梯度提升机(GradientBoosting):机器学习基础

在这里插入图片描述

数据处理和分析之分类算法:梯度提升机 (Gradient Boosting):机器学习基础

简介

梯度提升机的基本概念

梯度提升机(Gradient Boosting Machine, GBM)是一种迭代的机器学习算法,主要用于回归和分类问题。它通过构建一系列弱学习器(通常是决策树),并以梯度下降的方式优化损失函数,从而形成一个强学习器。GBM的核心思想是逐步修正模型的错误,每次迭代都专注于之前模型预测错误较大的样本,通过加权这些样本,使后续的弱学习器更加关注这些“困难”样本,从而提高整体模型的预测能力。

梯度提升机与传统机器学习算法的对比

与传统的机器学习算法如随机森林、支持向量机等相比,梯度提升机具有以下特点:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值