数据处理和分析之分类算法:梯度提升机(GradientBoosting):机器学习基础
数据处理和分析之分类算法:梯度提升机 (Gradient Boosting):机器学习基础
简介
梯度提升机的基本概念
梯度提升机(Gradient Boosting Machine, GBM)是一种迭代的机器学习算法,主要用于回归和分类问题。它通过构建一系列弱学习器(通常是决策树),并以梯度下降的方式优化损失函数,从而形成一个强学习器。GBM的核心思想是逐步修正模型的错误,每次迭代都专注于之前模型预测错误较大的样本,通过加权这些样本,使后续的弱学习器更加关注这些“困难”样本,从而提高整体模型的预测能力。
梯度提升机与传统机器学习算法的对比
与传统的机器学习算法如随机森林、支持向量机等相比,梯度提升机具有以下特点: