机器篇——集成学习(五) 细说 梯度提升(Gradient Boost)算法

本文详细介绍了梯度提升算法的思想和实现,包括利用损失函数的负梯度来拟合回归树,以及通过梯度下降法在函数空间中优化模型。讲解了算法的每一步目标和具体流程,强调了残差的重要性,并为理解GBDT算法奠定了基础。

返回主目录

返回集成学习目录

上一章:机器篇——集成学习(四) 细说 AdaBoost 算法

下一章:机器篇——集成学习(六) 细说 GBDT 算法

 

本小节,细说 梯度提升(Gradient Boost)算法,下一小节细说 GBDT 算法

 

二. 具体算法

5. 梯度提升(Gradient Boost)算法

    (1). Gradient Boost 算法思想

     ①. 利用损失函数的负梯度在当前模型的值作为回归问题提升树算法中残差的近似值,拟合一个回归树。

     ②. 梯度下降的经典数值优化公式:

               \LARGE \theta = \theta - \alpha \frac{\partial L(\theta)}{\partial \theta}

     ③. Gradient Boost 采用和 AdaBoost 同样的加法模型,在第 \large m 次迭代中,前 \large m -1 个基学习器都是固定的,即:

               \LARGE f_{m}(x) = f_{m - 1}(x) + \rho _{m} h_{m}(x)

     ④. 在第&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值