上一章:机器篇——集成学习(四) 细说 AdaBoost 算法
下一章:机器篇——集成学习(六) 细说 GBDT 算法
本小节,细说 梯度提升(Gradient Boost)算法,下一小节细说 GBDT 算法
二. 具体算法
5. 梯度提升(Gradient Boost)算法
(1). Gradient Boost 算法思想
①. 利用损失函数的负梯度在当前模型的值作为回归问题提升树算法中残差的近似值,拟合一个回归树。
②. 梯度下降的经典数值优化公式:
③. Gradient Boost 采用和 AdaBoost 同样的加法模型,在第 次迭代中,前
个基学习器都是固定的,即:
④. 在第&

本文详细介绍了梯度提升算法的思想和实现,包括利用损失函数的负梯度来拟合回归树,以及通过梯度下降法在函数空间中优化模型。讲解了算法的每一步目标和具体流程,强调了残差的重要性,并为理解GBDT算法奠定了基础。
最低0.47元/天 解锁文章
1267

被折叠的 条评论
为什么被折叠?



