数据处理和分析之关联规则学习:关联规则学习的可视化工具教程
数据处理和分析之关联规则学习:可视化工具的运用
关联规则学习概述
关联规则学习(Association Rule Learning)是一种在大数据集中发现有趣的关系或模式的机器学习方法,主要用于市场篮子分析、交叉销售策略、客户关系管理、推荐系统等领域。其核心是通过分析数据集中物品之间的频繁出现,找出具有统计显著性的关联规则。例如,在超市购物数据中,发现“购买面包的顾客有70%的可能性也会购买牛奶”,这就是一个关联规则。
基本概念
- 频繁项集(Frequent Itemset):在数据集中出现频率超过给定阈值的物品集合。
- 支持度(Support):一个项集在数据集中出现的频率。
- 置信度(Confidence