数据处理和分析之数据预处理:缺失值处理(Missing Value Imputation):使用中位数和众数填充缺失值
理解缺失值处理的重要性

缺失值的常见原因
在数据收集过程中,缺失值的出现是不可避免的。这些缺失值可能由以下几种常见原因造成:
- 数据录入错误:人为录入数据时的疏忽或错误。
- 设备故障:数据采集设备的故障或不稳定性导致数据丢失。
- 隐私保护:某些敏感信息可能被故意隐藏或删除。
- 数据源问题:数据源本身可能不完整或存在错误。
- 不适用的字段:对于某些记录,特定字段可能不适用,从而产生缺失。
缺失值对数据分析的影响