数据处理和分析之数据预处理:缺失值处理(Missing Value Imputation):使用中位数和众数填充缺失值

数据处理和分析之数据预处理:缺失值处理(Missing Value Imputation):使用中位数和众数填充缺失值

理解缺失值处理的重要性

在这里插入图片描述

缺失值的常见原因

在数据收集过程中,缺失值的出现是不可避免的。这些缺失值可能由以下几种常见原因造成:

  • 数据录入错误:人为录入数据时的疏忽或错误。
  • 设备故障:数据采集设备的故障或不稳定性导致数据丢失。
  • 隐私保护:某些敏感信息可能被故意隐藏或删除。
  • 数据源问题:数据源本身可能不完整或存在错误。
  • 不适用的字段:对于某些记录,特定字段可能不适用,从而产生缺失。

缺失值对数据分析的影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值