数据处理和分析之数据预处理:缺失值处理案例研究与实践
数据处理和分析之数据预处理:缺失值处理
引言
缺失值的概念与影响
在数据科学和数据分析领域,数据集中的缺失值是一个常见的问题。缺失值,即数据集中某些观测值的某些特征没有记录或无法获取,可能由多种原因造成,包括数据收集过程中的错误、设备故障、人为疏忽等。缺失值的存在对数据分析和建模产生显著影响,主要体现在以下几个方面:
- 降低数据质量:缺失值会降低数据集的整体质量,使得数据的完整性和一致性受损。
- 影响分析结果:在进行统计分析或机器学习建模时,缺失值可能导致结果偏差,影响模型的准确性和可靠性。
- 降低模型性能:对于某些算法,如线性回归、决策树等,缺失值的存在会直接降