数据处理和分析之数据预处理:数据清洗项目案例分析与实践

数据处理和分析之数据预处理:数据清洗项目案例分析与实践

在这里插入图片描述

数据清洗的重要性与目标

数据清洗的定义

数据清洗,也称为数据清理,是数据预处理过程中的关键步骤,旨在识别和纠正数据集中的错误、不一致和遗漏。这一过程对于确保数据分析的准确性和可靠性至关重要。数据清洗涉及多种技术和算法,用于检测和处理数据中的质量问题,包括但不限于缺失值、异常值、重复记录和格式不一致等问题。

数据清洗的目的

数据清洗的主要目的有以下几点:

  • 提高数据质量:通过消除或修正数据中的错误和不一致性,提高数据的准确性和完整性。
  • 减少分析偏差:清洗后的数据能更真实地反映实际情况,避免因数据质量问题导致的分析结果偏差。
  • 提升分析效率:干净的数据可以减少数据处理和分析的时间,提高整体的工作效率。
  • 增强决策可靠性&
Pandas数据分析 普林大数据学院 普 林 大 数 据 学 院 P R I N C E T E C H S B I G D A T A C O L L E G E 2 3 目录 第一部分 文件读写 第二部分 变量离散化 第三部分 缺失值填补 普林大数据学院 普 林 大 数 据 学 院 P R I N C E T E C H S B I G D A T A C O L L E G E 第四部分 数据标准化 第五部分 数据合并 第六部分 数据组合 第七部分 数字编码 第八部分 OneHot编码 普 林 大 数 据 学 院 P R I N C E T E C H S B I G D A T A C O L L E G E 普林大数据学院 4 数据文件操作——读入数据 • pandas提供了一些用于将表格型数据读取为DataFrame对象的函数, 常用的函数为read_csvread_table • 函数的选项可以划分为几个大类 • 索引:将一个或多个列当做返回的DataFrame处理,以及是否从文件、用户 获取列名 • 类型推断数据转换:包括用户定义值的转换、缺失值标记列表等 • 日期解析:包括组合功能,比如将分散在多个列中的日期时间信息组合起来 • 迭代:支持对大文件进行逐块迭代 • 不规整数据问题:跳过一些行、页脚、注释或其他一些不重要的东西 普 林 大 数 据 学 院 P R I N C E T E C H S B I G D A T A C O L L E G E 普林大数据学院 5 文件读写 Pandas提供了一些用于将表格型数据读取位DataFrame对象的函数。 其中最常用的为read_csvread_table。read_csv 从文件、URL、文件 型对象中加载带分隔符的数据。默认分隔符为逗号。read_table从文件、 URL、文件型对象中加载带分隔符的数据。默认分隔符为制表符 (“\t”) In[19]:df= pd.read_csv('iris.csv') df.head() Out[19]: sepal_len sepal_wh petal_len petal_wh target 0 5.1 3.5 1.4 0.2 0 1 4.9 3.0 1.4 0.2 0 2 4.7 3.2 1.3 0.2 0 3 4.6 3.1 1.5 0.2 0 4 5.0 3.6 1.4 0.2 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值