基于DFS方法的洛谷P1036的解法

—————————————本文旨在讨论计算机知识,欢迎指正!—————————————

这是一道很基础和经典的模版题目:

首先观察题目,我们可以把实现代码分为三个主要部分:

1、主函数集成;

2、质数判断函数;

3、深搜累加函数;

于是我们可以尝试实现:

1.主函数集成:

int main()
{
    cin >> n >> k;
    for (int i = 1; i <= n; i++)
    {
        cin >> a[i];
    }
    dfs(1, 1);
    cout << ans << endl;
    return 0;
}

接下来,则是质数判断函数(这里是朴素判断,你可以试试欧拉筛更快捷)

int isprime(int x)
{
    for (int i = 2; i * i <= x; i++)
    {
        if (x % i == 0)//若能整除则不是质数
        {
            return 0;
        }
    }
    return 1;
}

最后,是dfs搜索函数:

void dfs(int start, int count)//start是到第x个数(a[25]数组中),count 是k个数字已经选了几个
{
    if (count > k)//选完就可以判断是否合理了
    {
        int sum = 0;
        for (int i = 1; i <= k; i++)
        {
            sum += arr[i];
        }
        if (isprime(sum)) {
            ans++;
        }
        return;
    }
    for (int i = start; i <= n; i++)
    {
        arr[count] = a[i];
        dfs(i + 1, count + 1);//因为避免选择重复数字,所以用start来当第一项
        arr[count] = 0;//简单回溯
    }
}

完成如此三个函数,我们的题目就完成了!

下面的是完整代码:

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;
int n, k;
int ans = 0;
int a[25];//存储输出的数字
int arr[25];//存储式子内的数字
int isprime(int x)//质数判断函数
{
    for (int i = 2; i * i <= x; i++)
    {
        if (x % i == 0)
        {
            return 0;
        }
    }
    return 1;
}
void dfs(int start, int count)//start是到第x个数(a[25]数组中),count 是k个数字已经选了几个
{
    if (count > k)//选完就可以判断是否合理了
    {
        int sum = 0;
        for (int i = 1; i <= k; i++)
        {
            sum += arr[i];
        }
        if (isprime(sum)) {
            ans++;
        }
        return;
    }
    for (int i = start; i <= n; i++)
    {
        arr[count] = a[i];
        dfs(i + 1, count + 1);//因为避免选择重复数字,所以用start来当第一项
        arr[count] = 0;//简单回溯
    }
}
int main()
{
    cin >> n >> k;
    for (int i = 1; i <= n; i++)
    {
        cin >> a[i];
    }
    dfs(1, 1);
    cout << ans << endl;//输出答案;
    return 0;
}

 希望能对你有所帮助!

<think>好的,用户需要查找洛谷P1036题目的相关信息或解法。首先,我得回忆一下这个题目的内容。根据引用[1],P1036是NOIP2002普及组的“选数”问题。题目大意是从给定的n个数中选出k个数,使得它们的和是素数,求有多少种不同的选择方案。 用户可能希望得到详细的解法分析,所以需要分步骤解释。题目有两个解法:子集枚举和深度优先搜索(DFS)。子集枚举法是通过遍历所有可能的k元素组合,然后判断它们的和是否为素数。这种方法可能适用于较小的n值,但时间复杂度较高,因为组合数会随着n增大而急剧增加。DFS方法则是递归地选择每个数,记录当前选中的数量和总和,当选中k个数时进行判断,这样可以剪枝优化,减少不必要的计算。 接下来需要确认这两种方法的实现细节。子集枚举可以使用Python的itertools.combinations生成所有组合,然后逐个计算和并检查素数。DFS则需要递归函数,参数包括当前索引、已选数量、当前和,并在达到k个数时进行判断。需要注意的是去重,比如避免选择相同元素的不同排列视为不同方案,但题目中应该给出的n个数是不同的,所以不需要考虑元素重复的问题,但组合本身是无序的,所以直接遍历不同位置即可。 关于素数判断,需要高效的算法。因为数值可能较大,简单的试除法可能在时间上不够优化。可以预先用试除法到平方根,或者用更高级的方法,但根据题目限制,试除法应该足够,因为k和n的范围在题目中可能不大(比如n≤20,k≤n),所以每个和的值不会太大,试除法可行。 然后,根据引用[1]中的AC代码,可以给出示例代码。例如子集枚举的Python代码可能用到itertools,而DFS则需要递归结构。需要提醒用户注意输入格式,比如n和k的读取,然后是n个整数。输出符合条件的组合数目。 还需要考虑用户可能的疑问,比如时间复杂度的分析,或者如何优化。例如,当n=20,k=10时,组合数是184756,对于每个组合进行素数判断,可能需要一定的优化,但题目数据可能允许这样的复杂度。而DFS通过剪枝,可以在某些情况下提前终止递归,减少计算量。 最后,生成相关问题,比如不同解法的比较、如何优化素数判断、题目在竞赛中的常见考点等,帮助用户进一步理解。</think>### 洛谷 P1036 [NOIP2002 普及组] 选数 解法解析 #### 题目描述 给定 $n$ 个整数,从中选出 $k$ 个数,使其和为素数。求满足条件的组合数。 #### 输入输出示例 **输入 #1** ``` 4 3 3 7 12 19 ``` **输出 #1** ``` 1 ``` (唯一合法的组合是 $3+7+19=29$) --- ### 解法1:子集枚举 **核心思路** 1. 生成所有 $C(n,k)$ 种组合; 2. 计算每组数的和,判断是否为素数; 3. 统计符合条件的组合数。 **代码实现** ```python from itertools import combinations def is_prime(num): if num < 2: return False for i in range(2, int(num**0.5)+1): if num % i == 0: return False return True n, k = map(int, input().split()) nums = list(map(int, input().split())) count = 0 for combo in combinations(nums, k): s = sum(combo) if is_prime(s): count += 1 print(count) ``` **复杂度分析** - 时间复杂度:$O(C(n,k) \cdot \sqrt{S})$,其中 $S$ 为组合和的最大值; - 适用场景:$n \leq 20$(组合数可控)。 --- ### 解法2:深度优先搜索(DFS) **核心思路** 1. 递归选择每个数,记录已选数的数量与和; 2. 剪枝:当剩余可选数不足以凑齐 $k$ 个数时终止递归; 3. 到达叶子节点(选满 $k$ 个数)时判断素数。 **代码实现** ```python def is_prime(num): if num < 2: return False for i in range(2, int(num**0.5)+1): if num % i == 0: return False return True n, k = map(int, input().split()) nums = list(map(int, input().split())) count = 0 def dfs(start, selected, total): global count if selected == k: if is_prime(total): count += 1 return # 剩余元素不足时剪枝 if n - start < k - selected: return for i in range(start, n): dfs(i+1, selected+1, total + nums[i]) dfs(0, 0, 0) print(count) ``` **优化点** - 剪枝减少递归层数; - 避免重复计算组合。 --- ### 相关问题 1. **如何优化素数判断的效率?** - 预生成素数表(埃氏筛法)或使用 Miller-Rabin 算法[^1]。 2. **DFS和子集枚举的适用场景有何区别?** - DFS更适合需要剪枝的场景(如元素范围较大),子集枚举更直观但组合数爆炸[^2]。 3. **该题目在竞赛中考察哪些知识点?** - 组合生成、素数判断、搜索算法设计[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值