洛谷P1115最大字段和的前缀和做法

———————————本文旨在学习交流计算机知识,欢迎指正!————————————

看到标题,我们可以发现,这也是一个继承性累加问题,很显然的想到滑动窗口和前缀和两个方法:

首先看滑动窗口,那我们的思路就是左边是left,右边是right,而每次向右判断最大的数更新值但记录最大值,可是,如果这样做无异于每个点都要当作左点一次,时间复杂度为(n*n/2) 对于数据来看,有可能会超限,和暴力无异,于是我们想到改换一种别的方法————前缀和:

首先,我们记录下传入数组a和叠加前缀数组pre:

 int n;
    cin >> n;
    vector<int>a(n + 1, 0);
    vector<int>pre(n + 1, 0);
    for (int i = 1; i <= n; i++)cin >> a[i];
    for (int i = 1; i <= n; i++)pre[i] = pre[i - 1] + a[i];

然后,我们来筛选最大字段和:首先,我们先记录前驱最小值minner(最开始是0,意思是全选,后来和pre[i]比较,来将可能的小于0的某个子段作为最大子段和的开头【即pre[i]-minner】值更大)并且记录一个最大和值子段,作为答案的记录。

 

 int minner = 0;
    int ans = 0;
    for (int i = 1; i <= n; i++)//遍历,寻找最大子段和
    {
        ans = max(ans, pre[i] - minner);
        minner = min(minner, pre[i]);
    }

最后输出ans即可:

下面是完整代码:

 

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int main()
{
    int n;
    cin >> n;
    vector<int>a(n + 1, 0);
    vector<int>pre(n + 1, 0);
    for (int i = 1; i <= n; i++)cin >> a[i];
    for (int i = 1; i <= n; i++)pre[i] = pre[i - 1] + a[i];
    int minner = 0;
    int ans = 0;
    for (int i = 1; i <= n; i++)
    {
        ans = max(ans, pre[i] - minner);
        minner = min(minner, pre[i]);
    }
    cout << ans << endl;
    return 0;
}

希望能对你有所帮助!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值