如何使用yolov8训练——工作装备目标检测数据集 鞋子面罩口罩 安全带头盔 手套 安全背心 工作服数据集 6.6k张高质量图像 格式(可选):YOLO格式(.txt)、VOC格式(.xml)
安全防护PPE工作装备目标检测数据集
-数据量: 6.6k张高质量图像
-目标类别(nc=14):
- Boots:靴子
- Earmuff:耳罩
- Face-Shield:面罩
- Glove:手套
- Harness:安全带/吊带
- Helmet:头盔
- Mask:口罩
- No-Earmuff:不戴耳罩
- No-Helmet:不戴头盔
- No-Safety-Glasses:不戴安全眼镜
- Safety-Glasses:安全眼镜
- Safety-Suit:安全服
- Vest:背心
- Wearpack:作业服/工作服
-格式(可选):YOLO格式(.txt)、VOC格式(.xml)
PPE(个人防护装备)工作装备目标检测数据集,并提供使用YOLOv8进行训练的详细步骤和代码。
数据集介绍
- 数据集概述
数据集名称:PPE工作装备目标检测数据集
图像数量:6,600张高质量图像
目标类别:14类,包括:
Boots:靴子
Earmuff:耳罩
Face-Shield:面罩
Glove:手套
Harness:安全带/吊带
Helmet:头盔
Mask:口罩
No-Earmuff:不戴耳罩
No-Helmet:不戴头盔
No-Safety-Glasses:不戴安全眼镜
Safety-Glasses:安全眼镜
Safety-Suit:安全服
Vest:背心
Wearpack:作业服/工作服
数据格式:YOLO格式(.txt)、VOC格式(.xml)
数据集划分:已划分好训练集、验证集和测试集 - 数据集结构
假设你的数据集已经按照以下结构组织:
深色版本
ppe_dataset/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
└── labels/
├── train/
├── val/
└── test/
每个文件夹中包含对应的图像文件和标签文件。确保所有图像文件都是.jpg格式,而标签文件是.txt格式(YOLO格式),并且它们的名字与对应的图像文件相同。
数据集配置文件
创建一个数据集配置文件(如ppe_dataset.yaml),该文件定义了数据集的基本信息,包括路径、类别等。示例配置如下:
yaml
深色版本
训练和验证的数据集路径
train: ppe_dataset/images/train
val: ppe_dataset/images/val
test: ppe_dataset/images/test
标签路径
labels_train: ppe_dataset/labels/train
labels_val: ppe_dataset/labels/val
labels_test: ppe_dataset/labels/test
类别名称
names:
0: Boots
1: Earmuff
2: Face-Shield
3: Glove
4: Harness
5: Helmet
6: Mask
7: No-Earmuff
8: No-Helmet
9: No-Safety-Glasses
10: Safety-Glasses
11: Safety-Suit
12: Vest
13: Wearpack
类别数量
nc: 14
训练模型
- 安装依赖
确保你的开发环境中安装了必要的软件和库。YOLOv8是基于PyTorch框架的,因此你需要安装Python以及PyTorch。
安装Python(推荐3.7或更高版本)
安装PyTorch:你可以从PyTorch官方网站获取安装命令,根据你的系统配置选择合适的安装方式。
克隆YOLOv8的官方仓库到本地,并安装项目所需的其他依赖:
bash
深色版本
git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip install -r requirements.txt
2. 训练模型
在完成上述准备工作后,你可以开始训练模型了。打开终端,进入YOLOv8项目的根目录,运行训练命令:
bash
深色版本
python ultralytics/yolo/v8/detect/train.py --data ppe_dataset.yaml --cfg yolov8.yaml --weights yolov8x.pt --batch-size 16 --epochs 100
这里:
–data 参数指定了数据集配置文件的路径。
–cfg 参数指定了模型配置文件。
–weights 参数用于指定预训练权重的路径,这有助于加速训练过程并提高最终模型的性能。
–batch-size 和 --epochs 分别设置了批量大小和训练轮数。
模型评估
训练完成后,可以通过验证集来评估模型的性能。YOLOv8提供了方便的命令来进行模型评估:
bash
深色版本
python ultralytics/yolo/v8/detect/val.py --data ppe_dataset.yaml --weights runs/train/exp/weights/best.pt
这里,best.pt 是训练过程中保存的最佳模型权重文件。
模型推理
你可以使用训练好的模型进行推理,检测新的图像中的目标。示例命令如下:
bash
深色版本
python ultralytics/yolo/v8/detect/predict.py --source path/to/your/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.25
这里:
–source 参数指定了要检测的图像路径。
–conf 参数设置了置信度阈值,低于该阈值的检测结果将被忽略。
注意事项
数据增强:为了提高模型的泛化能力,可以考虑使用数据增强技术,如随机裁剪、翻转、颜色抖动等。YOLOv8默认支持多种数据增强方法。
超参数调整:根据训练过程中观察到的损失值和验证集上的性能,适当调整学习率、批量大小等超参数。
硬件资源:如果显存不足,可以减少批量大小或使用更小的模型变体。
多尺度训练:可以尝试多尺度训练,以提高模型对不同尺度目标的检测能力。
进一步优化
数据预处理:确保图像质量和尺寸一致,可以使用图像增强技术提高模型的鲁棒性。
模型选择:根据实际需求选择合适的YOLOv8模型变体,如yolov8s、yolov8m、yolov8l等。
多GPU训练:如果有多块GPU,可以使用多GPU训练来加速训练过程。
示例代码
- 训练脚本
确保你已经将数据集和配置文件准备好,然后运行以下训练脚本:
bash
深色版本
进入YOLOv8项目目录
cd ultralytics
训练模型
python ultralytics/yolo/v8/detect/train.py --data ppe_dataset.yaml --cfg yolov8.yaml --weights yolov8x.pt --batch-size 16 --epochs 100
2. 评估脚本
训练完成后,评估模型性能:
bash
深色版本
python ultralytics/yolo/v8/detect/val.py --data ppe_dataset.yaml --weights runs/train/exp/weights/best.pt
3. 推理脚本
使用训练好的模型进行推理:
bash
深色版本
python ultralytics/yolo/v8/detect/predict.py --source path/to/your/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.25
训练代码,包括数据集准备、模型训练、模型评估和模型推理的完整流程。我们将使用YOLOv8进行训练,并假设你已经按照前面的结构组织好了数据集。
- 数据集准备
确保你的数据集已经按照以下结构组织:
深色版本
ppe_dataset/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
└── labels/
├── train/
├── val/
└── test/
2. 创建数据集配置文件
创建一个数据集配置文件(如ppe_dataset.yaml),该文件定义了数据集的基本信息,包括路径、类别等。示例配置如下:
yaml
深色版本
训练和验证的数据集路径
train: ppe_dataset/images/train
val: ppe_dataset/images/val
test: ppe_dataset/images/test
标签路径
labels_train: ppe_dataset/labels/train
labels_val: ppe_dataset/labels/val
labels_test: ppe_dataset/labels/test
类别名称
names:
0: Boots
1: Earmuff
2: Face-Shield
3: Glove
4: Harness
5: Helmet
6: Mask
7: No-Earmuff
8: No-Helmet
9: No-Safety-Glasses
10: Safety-Glasses
11: Safety-Suit
12: Vest
13: Wearpack
类别数量
nc: 14
3. 安装依赖
确保你的开发环境中安装了必要的软件和库。YOLOv8是基于PyTorch框架的,因此你需要安装Python以及PyTorch。
安装Python(推荐3.7或更高版本)
安装PyTorch:你可以从PyTorch官方网站获取安装命令,根据你的系统配置选择合适的安装方式。
克隆YOLOv8的官方仓库到本地,并安装项目所需的其他依赖:
bash
深色版本
git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip install -r requirements.txt
4. 训练模型
在完成上述准备工作后,你可以开始训练模型了。打开终端,进入YOLOv8项目的根目录,运行训练命令:
bash
深色版本
python ultralytics/yolo/v8/detect/train.py --data ppe_dataset.yaml --cfg yolov8.yaml --weights yolov8x.pt --batch-size 16 --epochs 100
5. 模型评估
训练完成后,可以通过验证集来评估模型的性能。YOLOv8提供了方便的命令来进行模型评估:
bash
深色版本
python ultralytics/yolo/v8/detect/val.py --data ppe_dataset.yaml --weights runs/train/exp/weights/best.pt
6. 模型推理
你可以使用训练好的模型进行推理,检测新的图像中的目标。示例命令如下:
bash
深色版本
python ultralytics/yolo/v8/detect/predict.py --source path/to/your/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.25
7. 详细代码示例
7.1 训练脚本
确保你已经将数据集和配置文件准备好,然后运行以下训练脚本:
bash
深色版本
进入YOLOv8项目目录
cd ultralytics
训练模型
python ultralytics/yolo/v8/detect/train.py --data ppe_dataset.yaml --cfg yolov8.yaml --weights yolov8x.pt --batch-size 16 --epochs 100
7.2 评估脚本
训练完成后,评估模型性能:
bash
深色版本
python ultralytics/yolo/v8/detect/val.py --data ppe_dataset.yaml --weights runs/train/exp/weights/best.pt
7.3 推理脚本
使用训练好的模型进行推理:
bash
深色版本
python ultralytics/yolo/v8/detect/predict.py --source path/to/your/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.25
8. 详细代码示例(Python脚本)
如果你希望在一个Python脚本中完成这些步骤,可以参考以下示例:
python
深色版本
import subprocess
定义路径
dataset_path = “ppe_dataset”
config_path = “ppe_dataset.yaml”
model_config = “yolov8.yaml”
pretrained_weights = “yolov8x.pt”
output_dir = “runs/train/exp”
训练模型
train_command = [
“python”, “ultralytics/yolo/v8/detect/train.py”,
“–data”, config_path,
“–cfg”, model_config,
“–weights”, pretrained_weights,
“–batch-size”, “16”,
“–epochs”, “100”
]
subprocess.run(train_command)
评估模型
val_command = [
“python”, “ultralytics/yolo/v8/detect/val.py”,
“–data”, config_path,
“–weights”, f"{output_dir}/weights/best.pt"
]
subprocess.run(val_command)
推理
predict_command = [
“python”, “ultralytics/yolo/v8/detect/predict.py”,
“–source”, “path/to/your/image.jpg”,
“–weights”, f"{output_dir}/weights/best.pt",
“–conf”, “0.25”
]
subprocess.run(predict_command)
9. 注意事项
数据增强:为了提高模型的泛化能力,可以考虑使用数据增强技术,如随机裁剪、翻转、颜色抖动等。YOLOv8默认支持多种数据增强方法。
超参数调整:根据训练过程中观察到的损失值和验证集上的性能,适当调整学习率、批量大小等超参数。
硬件资源:如果显存不足,可以减少批量大小或使用更小的模型变体。
多尺度训练:可以尝试多尺度训练,以提高模型对不同尺度目标的检测能力。
10. 进一步优化
数据预处理:确保图像质量和尺寸一致,可以使用图像增强技术提高模型的鲁棒性。
模型选择:根据实际需求选择合适的YOLOv8模型变体,如yolov8s、yolov8m、yolov8l等。
多GPU训练:如果有多块GPU,可以使用多GPU训练来加速训练过程。