以使用深度学习中的目标检测方法来识别图像中的17类电力设备。这里我们将以YOLOv5来训练无人机视角电力巡检资产检测数据集 识别检测阻尼器,玻璃绝缘子,塔身标识牌等检测

以使用深度学习中的目标检测方法来识别图像中的17类电力设备。这里我们将以YOLOv5来训练无人机视角电力巡检资产检测数据集 识别检测阻尼器,玻璃绝缘子,塔身标识牌等检测

以下文章及代码仅供参考。

无人机视角电力巡检资产检测数据集在这里插入图片描述

17类目标,共10000余张无人机图像,json方式标注,类别如下:
1.Spiral Damper - 螺旋阻尼器
2.Stockbridge Damper - 斯托克布里奇阻尼器
3.Glass Insulator - 玻璃绝缘子
4.Glass Insulator Big Shackle - 玻璃绝缘子大扣环
5.Glass Insulator Small Shackle - 玻璃绝缘子小扣环
6.Glass Insulator Tower Shackle - 玻璃绝缘子塔扣环
7.Lightning Rod Shackle - 防雷接地线扣环
8.Lightning Rod Suspension - 防雷悬挂装置
9.Tower ID Plate - 塔身标识牌
10.Polymer Insulator - 聚合物绝缘子
11.Polymer Insulator Lower Shackle - 聚合物绝缘子下部扣环
12.Polymer Insulator Upper Shackle - 聚合物绝缘子上部扣环
13.Polymer Insulator Tower Shackle - 聚合物绝缘子塔扣环
14.Spacer - 隔板
15.Vari-grip - 可变夹具
16.Yoke - 铁箍
17.Yoke Suspension - 铁箍悬挂装置在这里插入图片描述
1
在这里插入图片描述
无人机视角下的电力线路资产检测任务,使用深度学习中的目标检测方法来识别图像中的17类电力设备。以YOLOv5为例进行说明,因为它是一个高效且易于使用的实时对象检测框架。

1. 环境配置

首先确保安装必要的库:

git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirements.txt

这会克隆YOLOv5的GitHub仓库并安装所需的依赖项。

2. 数据准备

假设您的数据结构如下:

/path/to/power_line_inspection_dataset/
    ├── images/
    │   ├── train/
    │   │   ├── img1.jpg
    │   │   └── ...
    │   ├── val/
    │   │   ├── img1.jpg
    │   │   └── ...
    ├── labels/
    │   ├── train/
    │   │   ├── img1.json
    │   │   └── ...
    │   ├── val/
    │   │   ├── img1.json
    │   │   └── ...

每个.json文件包含对应图像中所有目标实例的标注信息,格式遵循COCO或类似的JSON标注格式。我们需要将这些JSON标注转换为YOLO格式(即每行表示一个目标:类别ID 中心x 中心y 宽度 高度)。

编写脚本将JSON标注转换为YOLO格式:

import json
import os

def convert_to_yolo(json_path, output_dir):
    with open(json_path, 'r') as f:
        data = json.load(f)

    for image in data['images']:
        image_id = image['id']
        file_name = image['file_name']
        width = image['width']
        height = image['height']

        annotations = [anno for anno in data['annotations'] if anno['image_id'] == image_id]

        yolo_labels = []
        for annotation in annotations:
            category_id = annotation['category_id']
            bbox = annotation['bbox']
            x_center = (bbox[0] + bbox[2] / 2) / width
            y_center = (bbox[1] + bbox[3] / 2) / height
            bbox_width = bbox[2] / width
            bbox_height = bbox[3] / height
            yolo_labels.append(f"{category_id} {x_center} {y_center} {bbox_width} {bbox_height}")

        label_file = os.path.join(output_dir, os.path.splitext(file_name)[0] + '.txt')
        with open(label_file, 'w') as f:
            for label in yolo_labels:
                f.write(label + '\n')

# 使用示例
convert_to_yolo('/path/to/your/json_annotation.json', '/path/to/output/yolo_labels/')

3. 创建数据配置文件

创建一个data.yaml文件来定义数据集路径、类别等信息:

train: /path/to/power_line_inspection_dataset/images/train/
val: /path/to/power_line_inspection_dataset/images/val/

nc: 17  # 类别数量
names: ['Spiral Damper', 'Stockbridge Damper', 'Glass Insulator', 'Glass Insulator Big Shackle', 'Glass Insulator Small Shackle', 'Glass Insulator Tower Shackle', 'Lightning Rod Shackle', 'Lightning Rod Suspension', 'Tower ID Plate', 'Polymer Insulator', 'Polymer Insulator Lower Shackle', 'Polymer Insulator Upper Shackle', 'Polymer Insulator Tower Shackle', 'Spacer', 'Vari-grip', 'Yoke', 'Yoke Suspension']

4. 模型训练

使用预训练的YOLOv5模型进行微调:

python train.py --img 640 --batch 16 --epochs 100 --data /path/to/data.yaml --weights yolov5s.pt
  • --img 640 设置输入图像尺寸为640x640。
  • --batch 16 设置批次大小为16,根据您的GPU内存调整这个值。
  • --epochs 100 训练100个周期,可根据需要调整。
  • --data 指定之前创建的data.yaml路径。
  • --weights 使用YOLOv5的小型模型yolov5s.pt作为预训练权重。

5. 模型评估

在验证集上评估模型性能:

python val.py --weights runs/train/exp/weights/best.pt --data /path/to/data.yaml --img 640 --task val

这将输出包括mAP在内的各种评估指标,帮助您了解模型的表现。

6. 模型推理

对新图像进行预测:

python detect.py --source /path/to/test/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.25 --img 640
  • --source 可以是单个图像、目录或者视频文件。
  • --conf 设置置信度阈值,默认为0.25。
  • --img 设置输入图像尺寸。

7. 进一步优化

  • 数据增强:为了提高模型的泛化能力,可以在训练过程中应用更多的数据增强策略,如随机裁剪、翻转、色彩抖动等。可以通过修改train.py中的augment参数实现。
  • 超参数调整:实验不同的学习率、批次大小、训练周期数等,找到最适合您数据集的配置。
  • 多尺度训练:尝试开启多尺度训练(--multi-scale)以适应不同大小的目标。
  • 集成学习:结合不同初始化或架构的模型进行集成,通常可以获得更好的结果。

有效地利用YOLOv5进行基于无人机视角的电力线路资产检测。考虑到该数据集的多样性(17种不同的电力设备),这种全面性有助于训练出更加鲁棒和精确的模型。在实际部署时,还需考虑如何处理实时数据流以及如何将检测结果与现有维护系统整合。duiba.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值