使用YOLOv8训练在SODA10M车辆行人数据集上进行车辆和行人检测 建立基于深度学习卷积神经网络的车辆行人检测识别

使用YOLOv8训练在SODA10M车辆行人数据集上进行车辆和行人检测 建立基于深度学习卷积神经网络的车辆行人检测识别

以下文字及代码仅供参考。
SODA101M车辆行人检测数据集
在这里插入图片描述

数据集概述:
-YOLO格式标注,直接适用于YOLO模型训练
-样本数量:训练集:5000,验证集:5000测试集 10000未标注
-目标类别:行人、骑自行车的人、汽车、卡车、有轨电车、三轮车
-‘Pedestrian’, ‘Cyclist’, ‘Car’, ‘Truck’, ‘Tram’, ‘Tricycle’
在这里插入图片描述

为了使用YOLOv8在SODA10M数据集上进行车辆和行人检测,我们将从安装依赖项开始,然后是环境配置、准备数据集、配置YOLOv8模型、训练和评估模型,。以下是详细的步骤和代码。
在这里插入图片描述

1. 安装依赖

首先,确保你的环境中安装了必要的库。这包括PyTorch、YOLOv8以及其他可能需要的库。

pip install torch torchvision torchaudio
pip install ultralytics

2. 环境配置

确保你已经正确配置了Python环境,并且能够顺利运行上述命令安装所需的包。如果遇到任何问题,请检查是否满足所有依赖项的要求。

3. 准备数据集

下载并解压SODA10M数据集到本地目录。根据YOLO格式要求组织数据集,通常包括images文件夹(存放图片)和labels文件夹(存放标注文件)。同时,创建一个.yaml文件来描述数据集的路径和类别信息。
在这里插入图片描述

假设数据集目录结构如下:

soda10m/
├── images/
│   ├── train/
│   ├── val/
│   └── test/
└── labels/
    ├── train/
    ├── val/
    └── test/

创建soda10m.yaml文件:

train: ./soda10m/images/train/
val: ./soda10m/images/val/
test: ./soda10m/images/test/

nc: 6  # 类别数量
names: ['Pedestrian', 'Cyclist', 'Car', 'Truck', 'Tram', 'Tricycle']  # 类别名称

4. 配置YOLOv8

YOLOv8是一个非常灵活的框架,可以直接通过CLI或编程方式调用。这里我们以编程方式为例。

from ultralytics import YOLO

# 加载预训练的YOLOv8模型
model = YOLO('yolov8n.yaml')  # 使用'n'代表nano规模,你可以选择更大的模型如's', 'm', 'l', 'x'

# 或者加载已有的权重
# model = YOLO('yolov8n.pt')

5. 训练模型

使用准备好的数据集和配置文件开始训练模型。

results = model.train(data='soda10m.yaml', epochs=100, imgsz=640)  # 根据实际情况调整参数

6. 评估模型

训练完成后,可以对验证集进行评估,查看模型性能。

metrics = model.val()  # 在验证集上评估模型
print(metrics.box.map)  # 输出mAP值作为评估指标之一

7. 构建GUI应用程序

使用tkinter库快速构建一个简单的GUI应用来显示检测结果。

import tkinter as tk
from tkinter import filedialog
from PIL import Image, ImageTk
import cv2
import numpy as np

def detect_image():
    path = filedialog.askopenfilename()
    if not path:
        return
    
    # 执行检测
    results = model.predict(source=path)
    
    # 显示结果
    for result in results:
        image = result.orig_img
        for box in result.boxes:
            x1, y1, x2, y2 = map(int, box.xyxy)
            cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
            label = f"{result.names[int(box.cls)]} {box.conf:.2f}"
            cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,0,0), 2)
        
        img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
        img = ImageTk.PhotoImage(img)
        panel.configure(image=img)
        panel.image = img

root = tk.Tk()
panel = tk.Label(root)
panel.pack(pady=10)

btn = tk.Button(root, text="选择图片", command=detect_image)
btn.pack(side="bottom", fill="both", expand="yes", padx="10", pady="10")

root.mainloop()

8. 运行

请注意同学们,,以上代码段旨在提供参考,实际操作时可能需要根据具体情况做出适当调整。例如,模型训练过程中可能需要更细致地调整超参数,或者在构建GUI时考虑更多用户交互细节等。

仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值