使用PyTorch框架来实现行人图像检测和行人特征提取 如何构建基于深度学习的行人重识别系统,并建立GUI界面 使用openCV调用基于多尺度检测的改进的YOLO算法模型来进行行人检测
深度学习行人重识别
实现功能
行人重识别系统基于PyTorch框架实现,首先,需要使用PyTorch来实现行人图像检测和行人特征提取。
对于检测部分,使用openCV调用基于多尺度检测的改进的YOLO算法模型来进行行人检测。在检测到行人后,对行人图像区域进行截取并进行大小规范化。对于特征提取部分,使用预先训练好的引入空洞卷积的resnet-50卷积神经网络来提取行人图像的视觉特征。接下来,需要对特征进行比对。
使用欧氏距离来计算两个特征之间的相似度。如果两个特征之间的距离小于特定的阈值,就认为这两个特征来自同一个行人,否则我们认为它们来自不同行人。
最后,对于界面部分,使用PyQt5来构建交互式界面。在界面上显示行人图像和识别结果,并提供一些按钮来让用户进行相应的操作。
构建一个基于深度学习的行人重识别系统是一个复杂的任务,涉及到多个步骤:行人检测、特征提取、特征比对以及用户界面设计。
以下关键代码仅供参考。
1. 环境配置
确保安装了必要的库:
pip install torch torchvision opencv-python PyQt5 numpy scikit-learn
2. 行人检测
使用OpenCV调用改进的YOLO算法模型进行行人检测。
import cv2
def detect_pedestrians(image_path, yolo_model_path):
net = cv2.dnn.readNet(yolo_model_path)
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
image = cv2.imread(image_path)
height, width, channels = image.shape
blob = cv2.dnn.blobFromImage(image, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and class_id == 0: # Assuming class 0 is 'person'
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
pedestrians = []
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
cropped_image = image[y:y+h, x:x+w]
pedestrians.append(cropped_image)
return pedestrians
3. 特征提取
使用引入空洞卷积的ResNet-50模型提取行人图像的视觉特征。
import torch
import torch.nn as nn
from torchvision import models, transforms
class ResNet50WithDilatedConv(nn.Module):
def __init__(self):
super(ResNet50WithDilatedConv, self).__init__()
resnet = models.resnet50(pretrained=True)
self.features = nn.Sequential(*list(resnet.children())[:-2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
return x
def extract_features(pedestrian_images):
model = ResNet50WithDilatedConv().eval()
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
features = []
with torch.no_grad():
for img in pedestrian_images:
img_tensor = transform(img).unsqueeze(0)
feature = model(img_tensor)
features.append(feature.numpy())
return np.array(features)
4. 特征比对
使用欧氏距离计算两个特征之间的相似度。
from scipy.spatial.distance import cdist
def compare_features(query_feature, gallery_features, threshold=0.7):
distances = cdist(query_feature, gallery_features, metric='euclidean')
min_distance = np.min(distances)
if min_distance < threshold:
return True, min_distance
else:
return False, min_distance
5. 用户界面设计
使用PyQt5构建交互式界面。
import sys
from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QLabel, QVBoxLayout, QWidget, QFileDialog, QLineEdit
from PyQt5.QtGui import QPixmap, QImage
class PersonReIDApp(QMainWindow):
def __init__(self):
super().__init__()
self.initUI()
def initUI(self):
self.setWindowTitle('行人重识别')
self.setGeometry(100, 100, 800, 600)
self.image_label = QLabel(self)
self.image_label.setGeometry(100, 100, 600, 400)
self.load_button = QPushButton('打开视频', self)
self.load_button.move(100, 550)
self.load_button.clicked.connect(self.load_video)
self.detect_button = QPushButton('行人检测', self)
self.detect_button.move(300, 550)
self.detect_button.clicked.connect(self.detect_pedestrians)
self.file_path_edit = QLineEdit(self)
self.file_path_edit.setGeometry(100, 510, 600, 30)
def load_video(self):
options = QFileDialog.Options()
file_name, _ = QFileDialog.getOpenFileName(self, "选择视频", "", "Videos (*.mp4 *.avi);;All Files (*)", options=options)
if file_name:
self.file_path_edit.setText(file_name)
def detect_pedestrians(self):
video_path = self.file_path_edit.text()
if video_path:
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
if ret:
pedestrians = detect_pedestrians(frame, 'yolov3.weights')
features = extract_features(pedestrians)
# 进一步处理和显示结果
cap.release()
if __name__ == '__main__':
app = QApplication(sys.argv)
ex = PersonReIDApp()
ex.show()
sys.exit(app.exec_())
如何构建基于深度学习的行人重识别系统,并附带了一个简单的GUI界面。你可以根据实际需求调整模型结构、优化超参数或改进GUI布局,