一、引言
草莓作为世界范围内重要的水果之一,其种植面积广泛。然而,草莓的病害问题长期困扰着农民的生产和收成。草莓病害包括多种细菌、真菌、病毒性疾病,如白粉病、灰霉病、草莓根腐病等,若不及时识别和处理,可能导致草莓产量大幅下降,甚至完全失收。传统的草莓病害检测方法通常依赖于人工巡查,不仅工作量大,而且容易受天气、人员等因素影响,导致识别效率低且精度差。
深度学习技术,尤其是基于卷积神经网络(CNN)的目标检测算法,已成为计算机视觉领域的核心技术之一。YOLO(You Only Look Once)作为一种高效的目标检测算法,具备实时性强、精度高的特点,在各种应用场景中得到了广泛的使用。YOLOv8是YOLO系列的最新版本,相较于前一版本,进一步优化了精度、速度与模型大小,使得其在农业病害识别中的应用更加有效。
本博客将详细介绍如何利用YOLOv8算法和Streamlit框架,构建一个草莓病害检测识别系统。系统能够自动识别草莓叶片上的病害种类,并展示检测结果。我们将从数据集准备、模型训练、界面设计到系统实现,全面解析每一步骤的实现细节,帮助读者快速掌握草莓病害检测的技术和流程。
目录
<