采用随机森林算法进行分类预测,并使用前后端分离设计模式 构建基于Python医疗数据分析可视化实时监控系统

基于Python医疗数据分析可视化实时监控系统 采用随机森林算法进行分类预测,并使用前后端分离设计模式 构建基于Python医疗数据分析可视化实时监控系统


在这里插入图片描述

采用随机森林算法进行分类预测
现成医疗数据,包含患者病历、诊断记录等
在这里插入图片描述

系统架构
本系统采用前后端分离设计模式,后端基于Python + Flask 框架,负责数据处理、机器学习训练、预测分析等核心功能;前端采用Vue 框架,提供用户交互界面及可视化展示。
后端:Flask 负责数据管理、模型训练及预测
前端:Vue + Echarts 实现数据可视化
数据库:MySQL 存储医疗文本数据,确保数据稳定
在这里插入图片描述

预实现功能:
数据处理与机器学习
系统从MySQL 数据库中获取医疗文本数据,包括病历记录、医生诊断报告、医学文献等,并进行以下数据处理:
文本预处理:清洗、分词、特征提取
特征工程:从文本中提取对疾病预测有用的信息
机器学习训练:基于随机森林分类算法训练预测模型
参数优化:调整模型参数,提高分类准确性
在这里插入图片描述

疾病预测与可视化

  1. 预测功能:
    用户输入待分析的文本数据,系统调用训练好的随机森林模型进行疾病预测,并返回分类结果
  2. 数据可视化(Vue + Echarts):
    疾病趋势分析:展示不同疾病的发病率随时间变化的趋势
    地域分布分析:分析不同地区的疾病分布情况
    预测结果展示:可视化不同病例的预测类别及置信度

技术栈 及 方法技巧
编程语言:Python
后端框架:Flask
前端框架:Vue + Echarts
数据库:MySQL
机器学习算法:随机森林分类(Random Forest)

基于Python的医疗数据分析可视化实时监控系统,采用随机森林算法进行分类预测,并使用前后端分离设计模式,是一个复杂的项目。以下是详细的构建流程及系统代码示例。

仅供参考。

1. 系统架构与技术栈

1.1 技术栈
  • 编程语言:Python
  • 后端框架:Flask
  • 前端框架:Vue + Echarts
  • 数据库:MySQL
  • 机器学习算法:随机森林分类(Random Forest)
1.2 系统架构
  • 后端:负责数据管理、模型训练及预测。
  • 前端:提供用户交互界面及可视化展示。
  • 数据库:存储医疗文本数据,确保数据稳定。

2. 数据库设计

2.1 MySQL 数据库设计

创建一个名为 medical_data 的数据库,并包含以下表:

CREATE DATABASE medical_data;

USE medical_data;

CREATE TABLE patient_records (
    id INT AUTO_INCREMENT PRIMARY KEY,
    patient_id INT,
    record_text TEXT,
    diagnosis TEXT,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

CREATE TABLE disease_trends (
    id INT AUTO_INCREMENT PRIMARY KEY,
    disease_name VARCHAR(255),
    incidence_rate FLOAT,
    date DATE
);

CREATE TABLE geographic_distribution (
    id INT AUTO_INCREMENT PRIMARY KEY,
    region VARCHAR(255),
    disease_name VARCHAR(255),
    count INT
);

3. 后端开发 (Flask)

3.1 Flask 应用初始化

安装必要的库:

pip install flask flask_sqlalchemy pandas scikit-learn mysqlclient

创建 app.py 文件:

from flask import Flask, request, jsonify
from flask_sqlalchemy import SQLAlchemy
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://username:password@localhost/medical_data'
db = SQLAlchemy(app)

class PatientRecord(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    patient_id = db.Column(db.Integer)
    record_text = db.Column(db.Text)
    diagnosis = db.Column(db.String(255))
    created_at = db.Column(db.DateTime)

# 初始化TF-IDF向量化器和随机森林分类器
vectorizer = TfidfVectorizer()
clf = RandomForestClassifier()

@app.route('/train_model', methods=['POST'])
def train_model():
    # 从数据库获取数据
    records = PatientRecord.query.all()
    data = [(r.record_text, r.diagnosis) for r in records]
    df = pd.DataFrame(data, columns=['record_text', 'diagnosis'])

    # 文本预处理和特征提取
    X = vectorizer.fit_transform(df['record_text'])
    y = df['diagnosis']

    # 划分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # 训练模型
    clf.fit(X_train, y_train)

    # 预测和评估
    y_pred = clf.predict(X_test)
    report = classification_report(y_test, y_pred)
    return jsonify({'report': report})

@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    text = data['text']
    X = vectorizer.transform([text])
    prediction = clf.predict(X)[0]
    return jsonify({'prediction': prediction})

if __name__ == '__main__':
    app.run(debug=True)

4. 前端开发 (Vue + Echarts)

4.1 Vue 项目初始化

安装 Vue CLI 并创建项目:

npm install -g @vue/cli
vue create medical-dashboard
cd medical-dashboard
npm install axios echarts
4.2 Vue 组件开发

src/components 目录下创建 DiseaseTrend.vueGeographicDistribution.vue 文件。

DiseaseTrend.vue:

<template>
  <div>
    <h2>疾病趋势分析</h2>
    <div id="disease-trend-chart" style="width: 600px; height: 400px;"></div>
  </div>
</template>

<script>
import * as echarts from 'echarts';

export default {
  mounted() {
    this.initChart();
  },
  methods: {
    initChart() {
      const chartDom = document.getElementById('disease-trend-chart');
      const myChart = echarts.init(chartDom);
      const option = {
        title: {
          text: '疾病发病率趋势'
        },
        tooltip: {
          trigger: 'axis'
        },
        xAxis: {
          type: 'category',
          data: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
        },
        yAxis: {
          type: 'value'
        },
        series: [{
          name: '发病率',
          type: 'line',
          data: [120, 132, 101, 134, 90, 230, 210, 180, 190, 200, 150, 160]
        }]
      };
      myChart.setOption(option);
    }
  }
}
</script>

GeographicDistribution.vue:

<template>
  <div>
    <h2>地域分布分析</h2>
    <div id="geographic-distribution-chart" style="width: 600px; height: 400px;"></div>
  </div>
</template>

<script>
import * as echarts from 'echarts';

export default {
  mounted() {
    this.initChart();
  },
  methods: {
    initChart() {
      const chartDom = document.getElementById('geographic-distribution-chart');
      const myChart = echarts.init(chartDom);
      const option = {
        title: {
          text: '疾病地域分布'
        },
        tooltip: {},
        legend: {
          data: ['数量']
        },
        xAxis: {
          data: ["Region A", "Region B", "Region C", "Region D", "Region E"]
        },
        yAxis: {},
        series: [{
          name: '数量',
          type: 'bar',
          data: [5, 20, 36, 10, 10]
        }]
      };
      myChart.setOption(option);
    }
  }
}
</script>
4.3 主页面集成

src/App.vue 中集成上述组件:

<template>
  <div id="app">
    <h1>医疗疾病数据分析大屏可视化系统</h1>
    <DiseaseTrend />
    <GeographicDistribution />
  </div>
</template>

<script>
import DiseaseTrend from './components/DiseaseTrend.vue';
import GeographicDistribution from './components/GeographicDistribution.vue';

export default {
  components: {
    DiseaseTrend,
    GeographicDistribution
  }
}
</script>

5. 运行与测试

5.1 启动后端服务
python app.py
5.2 启动前端服务
npm run serve

访问 http://localhost:8080 查看前端页面。


总结

以上代码涵盖了从数据库设计到后端模型训练、前端数据可视化的完整流程。你可以根据实际需求调整代码,例如修改数据处理逻辑或优化模型参数。

仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值