如何构建基于深度学习卷积神经网络的 yolov8跌倒检测摔倒检测老年人跌倒识别检测 行人跌倒检测基于深度学习的跌倒摔倒检测

yolov8跌倒检测摔倒检测老年人跌倒检测行人跌倒检测基于yolov8的行人跌倒检测在这里插入图片描述

预实现目标
技术栈:yolo8+streamlit 可以识别两类:跌倒的人、站立的人
[1]可识别图片与视频,支持本地摄像头识别。图片识别支持统计检测到的物体数量,并返回到前端页面显示
[2]可以通过UI界面动态调节模型置信度,可以动态选择模型权重
在这里插入图片描述

web应用服务(有前后端,服务端默认在8501端口启动),可以部署到服务器。

基于YOLOv8的行人跌倒检测系统,并使用Streamlit作为前端界面,需要完成以下几个步骤:在这里插入图片描述

  1. 环境搭建:安装必要的库和工具。
  2. 数据集准备:收集和标注数据集。
  3. 模型训练:使用YOLOv8进行模型训练。
  4. 推理代码:编写推理代码以识别图片、视频和摄像头流。
  5. Web应用服务:使用Streamlit构建前端界面。

一、环境搭建

首先,确保你的环境中已安装Python和pip。然后安装以下库:

pip install torch torchvision opencv-python streamlit ultralytics

二、数据集准备

你需要一个包含两类标签的数据集:fall downstand person。假设你已经有了这样的数据集,结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
└── labels/
    ├── train/
    └── val/

三、模型训练

使用YOLOv8进行模型训练。首先,克隆Ultralytics仓库并下载预训练模型:

git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip install -r requirements.txt

然后,使用以下命令进行训练:

yolo task=detect mode=train model=yolov8n.yaml data=your_dataset.yaml epochs=100 imgsz=640

其中,your_dataset.yaml 是你的数据集配置文件,内容如下:

train: dataset/images/train
val: dataset/images/val

nc: 2
names: ['fall down', 'stand person']

四、推理代码

编写推理代码,支持图片、视频和摄像头流的识别。

图片推理
from ultralytics import YOLO
import cv2

def detect_image(model, image_path):
    results = model(image_path)
    return results[0].plot()
视频推理
def detect_video(model, video_path):
    cap = cv2.VideoCapture(video_path)
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        results = model(frame)
        annotated_frame = results[0].plot()
        cv2.imshow('YOLOv8 Detection', annotated_frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
摄像头推理
def detect_camera(model):
    cap = cv2.VideoCapture(0)
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        results = model(frame)
        annotated_frame = results[0].plot()
        cv2.imshow('YOLOv8 Detection', annotated_frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()

五、Web应用服务

使用Streamlit构建前端界面。

import streamlit as st
from ultralytics import YOLO
import cv2
import os

# Load the model
model = YOLO("best.pt")

st.title("基于YOLOv8的行人跌倒检测系统")

# Model configuration
st.sidebar.header("模型配置")
model_selection = st.sidebar.selectbox("选择模型", ["best_train.pt", "other_model.pt"])
confidence_threshold = st.sidebar.slider("最小置信度", 0.0, 1.0, 0.25)

# Image/video configuration
file_type = st.sidebar.selectbox("选择文件类型", ["图片", "视频", "摄像头"])

if file_type == "图片":
    uploaded_file = st.file_uploader("上传一张图片", type=["jpg", "jpeg", "png"])
    if uploaded_file is not None:
        file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
        image = cv2.imdecode(file_bytes, 1)
        results = model(image, conf=confidence_threshold)
        annotated_image = results[0].plot()
        st.image(annotated_image, caption='检测结果', use_column_width=True)
        st.write(f"检测到的物体数量: {len(results[0].boxes)}")

elif file_type == "视频":
    uploaded_file = st.file_uploader("上传一段视频", type=["mp4", "avi"])
    if uploaded_file is not None:
        with open(os.path.join("temp", uploaded_file.name), "wb") as f:
            f.write(uploaded_file.getbuffer())
        detect_video(model, os.path.join("temp", uploaded_file.name))

elif file_type == "摄像头":
    if st.button("开始摄像头检测"):
        detect_camera(model)

六、部署到服务器

将上述代码保存为app.py,然后在服务器上运行:

streamlit run app.py --server.port 8501

这样,基于YOLOv8和Streamlit的行人跌倒检测系统,可以识别图片、视频和摄像头流,并支持动态调节模型置信度和选择模型权重。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值