深度学习目标检测算法 区域人员计数 基于yolov5+deepsort的人流量统计系统 如何使用YOLOv5进行目标检测,并结合DeepSORT进行目标跟踪,最后统计人流量。

深度学习目标检测算法 区域人员计数 基于yolov5+deepsort的人流量统计系统 如何使用YOLOv5进行目标检测,并结合DeepSORT进行目标跟踪,最后统计人流量。

基于yolov5+deepsort的人流量统计系统在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
基于YOLOv5和DeepSORT的人流量统计系统,结合了目标检测、目标跟踪以及轨迹分析。代码示例,如何使用YOLOv5进行目标检测,并结合DeepSORT进行目标跟踪,最后统计人流量。

Step 1: 环境准备

为了配置CUDA和PyTorch环境,你需要确保系统上已安装了适当版本的NVIDIA驱动程序、CUDA Toolkit以及cuDNN。以下是详细的步骤和代码示例来帮助你完成环境配置:

1. 安装Miniconda

首先,你需要安装Miniconda来管理Python环境。访问Miniconda官网下载适合你的操作系统的安装包并按照指示进行安装。

2. 创建并激活Conda环境

打开命令提示符或终端,并运行以下命令来创建一个新的conda环境(这里使用Python 3.8为例):

conda create -n yolov5-env python=3.8
conda activate yolov5-env

3. 安装PyTorch与CUDA支持

根据你的CUDA版本选择合适的PyTorch安装命令。可以在PyTorch官网找到最新的安装指令。假设你的CUDA版本是11.3,可以使用以下命令安装:

pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113

请将cu113替换为匹配你CUDA版本的标签,如cu102等。

4. 验证CUDA是否正确安装

你可以通过运行一个简单的PyTorch脚本来验证CUDA是否正确安装:

import torch

print("CUDA available:", torch.cuda.is_available())
print("CUDA version:", torch.version.cuda)
print("PyTorch version:", torch.__version__)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
x = torch.randn(5, 5).to(device)
y = x * x
print(y)

如果一切正常,你应该看到输出表示CUDA可用且正在使用的设备是GPU。

5. 安装其他依赖库

YOLOv5需要一些额外的Python库,可以通过以下命令安装:

pip install numpy opencv-python-headless matplotlib seaborn scikit-learn tqdm pyyaml scipy pillow

对于DeepSORT,你可能还需要安装一些额外的库,比如filterpy等:

pip install filterpy

6. 克隆YOLOv5仓库

现在,你已经准备好开始使用YOLOv5了。克隆官方仓库并安装必要的依赖:

git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirements.txt

7. 测试YOLOv5

为了测试YOLOv5是否正确安装,可以尝试运行其中一个示例脚本:

python detect.py --source 0  # 使用摄像头作为输入源
# 或者使用图片或视频文件
# python detect.py --source path/to/image.jpg
# python detect.py --source path/to/video.mp4

以上步骤应该能帮助你在Windows系统上配置好基于CUDA的PyTorch环境,并准备好使用YOLOv5。记得在执行任何步骤之前,确认你的系统满足所有先决条件,包括正确的NVIDIA驱动程序、CUDA Toolkit和cuDNN的安装。

安装了YOLOv5和DeepSORT,CUDA和PyTorch环境。

Step 2: 导入必要的库

import cv2
import numpy as np
import torch
from deep_sort import DeepSort
from yolov5.models.experimental import attempt_load
from yolov5.utils.datasets import LoadStreams, LoadImages
from yolov5.utils.general import non_max_suppression, scale_coords
from yolov5.utils.torch_utils import select_device

Step 3: 初始化模型和参数

# 加载YOLOv5模型
weights = 'yolov5s.pt'  # 使用预训练的YOLOv5模型
device = select_device('')  # 自动选择设备(CPU或GPU)
model = attempt_load(weights, map_location=device)
stride = int(model.stride.max())
imgsz = 640

# 初始化DeepSORT
deepsort = DeepSort('osnet_x0_25', max_dist=0.2, nn_budget=100)

# 定义计数线
count_line = [(0, 320), (640, 320)]  # 水平线,可以根据实际情况调整
up_count = 0
down_count = 0

Step 4: 处理视频流

def process_video(video_path):
    cap = cv2.VideoCapture(video_path)
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        
        # 预处理图像
        img = letterbox(frame, imgsz, stride=stride)[0]
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)
        img = torch.from_numpy(img).to(device)
        img = img.float() / 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        
        # 目标检测
        pred = model(img, augment=False)[0]
        pred = non_max_suppression(pred, 0.25, 0.45, classes=None, agnostic=False)
        
        for i, det in enumerate(pred):  # detections per image
            if len(det):
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], frame.shape).round()
                
                # 进行目标跟踪
                outputs = deepsort.update(det.cpu(), frame)
                
                # 绘制边界框和ID
                for output in outputs:
                    bbox = output[:4]
                    id = output[-1]
                    x1, y1, x2, y2 = bbox
                    cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
                    cv2.putText(frame, f"ID-{id}", (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
                    
                    # 统计人流量
                    cx = (x1 + x2) / 2
                    cy = (y1 + y2) / 2
                    if cy < count_line[0][1] and cy > count_line[1][1]:
                        if id not in up_ids:
                            up_ids.add(id)
                            up_count += 1
                    elif cy > count_line[0][1] and cy < count_line[1][1]:
                        if id not in down_ids:
                            down_ids.add(id)
                            down_count += 1
        
        # 绘制计数线和统计信息
        cv2.line(frame, count_line[0], count_line[1], (0, 0, 255), 2)
        cv2.putText(frame, f"UP: {up_count}, DOWN: {down_count}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
        
        # 显示结果
        cv2.imshow("demo", frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows()

# 调用函数处理视频
process_video('path/to/your/video.mp4')

注意事项 仅供参考

  1. YOLOv5模型:你需要根据你的需求选择合适的YOLOv5模型权重文件。
  2. DeepSORT初始化DeepSort类需要根据你的需求进行适当的参数调整。
  3. 计数线设置count_line变量定义了用于统计人流量的虚拟线,你可以根据实际场景进行调整。
  4. 性能优化:在实际应用中,可能需要对代码进行进一步的优化,以提高处理速度和准确性。

代码示例:仅供参考

### DeepSort 目标跟踪实现方法 #### 选择合适的环境配置 为了成功运行DeepSort,建议在一个稳定的Python环境中操作。通常推荐使用Anaconda创建虚拟环境安装必要的依赖库[^1]。 #### 安装所需软件包 根据具体需求,在Ubuntu系统上部署DeepSort目标跟踪算法前,需确保已经安装了诸如PyTorch、CUDA等相关工具链以及OpenCV等计算机视觉库。对于YOLOv5+DeepSort组合而言,还需特别注意两者版本兼容性问题[^3]。 #### 准备数据集与预训练模型 获取适当的数据集用于测试非常重要;同时下载官方提供的或者自己训练好的YOLOv5权重文件作为物体检测的基础。此外,还需要准备或训练一个能够有效提取行人外观特征的Re-ID网络模型以供DeepSort调用[^4]。 #### 修改参数设置 调整`max_cosine_distance`, `nn_budget` 和 `nms_max_overlap`这些超参可以帮助优化性能表现。比如降低最大余弦距离阈值可以让匹配更加严格从而减少误关联情况发生;而合理设定神经网络预算(nn_budget)则有助于控制内存消耗[^2]。 #### 编写主程序逻辑 编写一段脚本读取视频流输入通过循环帧处理的方式依次执行如下步骤: - 使用YOLOv5进行当前帧内的所有感兴趣区域(ROI)定位; - 对于每一个被检出的对象框利用预先加载的人脸识别或其他形式的身份验证机制计算其对应的特征向量; - 调用DeepSort模块完成现有轨迹更新及新出现个体初始化工作; 最后将带有标注信息的画面输出显示出来以便观察实际效果。 ```python from deep_sort import nn_matching, preprocessing from deep_sort.tracker import Tracker import numpy as np import cv2 def create_tracker(): metric = nn_matching.NearestNeighborDistanceMetric( "cosine", max_cosine_distance=0.2, budget=None) tracker = Tracker(metric) return tracker video_capture = cv2.VideoCapture('test.mp4') tracker = create_tracker() while True: ret, frame = video_capture.read() # 假设detections是从YOLOv5得到的结果列表[(left,top,w,h),...] detections = ... features = encoder(frame, detections) detection_list = [] for i in range(len(detections)): detection_list.append(Detection(detections[i], scores[i], features[i])) tracker.predict() matches = tracker.update(detection_list) for track in tracker.tracks: if not track.is_confirmed() or track.time_since_update > 1: continue bbox = track.to_tlbr() id_num = str(track.track_id) cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), ( int(bbox[2]), int(bbox[3])), (255, 255, 255), 2) cv2.putText(frame, str(id_num), (int( bbox[0]), int(bbox[1])), 0, 5e-3 * 200, (0, 255, 0), 2) cv2.imshow('', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值