UNet架构训练输电线路、输电杆塔、水泥杆和输电线路木头杆塔的语义分割模型检测输电线路分割
以下文字及代码仅供参考。
输电线路语义分割图像数据集,输电线路,输电杆塔,水泥杆,输电线路木头杆塔,1200张左右,分割标签:json标签

1

1

1

1

输电线路、输电杆塔、水泥杆和输电线路木头杆塔的语义分割模型,UNet架构。以下是如何准备数据集、训练UNet模型以及构建检测系统的详细步骤。
仅供参考
1. 环境配置
首先确保已经安装了必要的依赖库:
pip install torch torchvision albumentations opencv-python tqdm
2. 数据准备
数据集由1200张图像及其对应的JSON格式标签组成。需要将这些JSON标签转换为适合UNet模型使用的mask图像。可以使用Python脚本来完成这一任务。以下是处理JSON到mask图像的示例代码:
import cv2
import json
import numpy as np
from pathlib import Path
def json_to_mask(json_path, mask_path):
with open(json_path) as f:
data = json.load(f)
height, width = data['imageHeight'], data['imageWidth']
mask = np.zeros((height, width), dtype=np.uint8)
for shape in data['shapes']:
label = shape['label']
points = np.array(shape['points'], dtype=np.int32)
# 假设每个类别都有一个唯一的id
class_id = {'transmission_line': 1, 'tower': 2, 'cement_pole': 3, 'wooden_tower': 4}[label]
cv2.fillPoly(mask, [points], class_id)
cv2.imwrite(mask_path, mask)
# 示例:遍历所有json文件并生成相应的mask
for json_file in Path('path/to/jsons').glob('*.json'):
mask_file = Path('path/to/masks') / (json_file.stem + '.png')
json_to_mask(str(json_file), str(mask_file))
根据你的实际路径修改上述代码中的路径。
3. 创建数据加载器
接下来,创建一个PyTorch数据加载器来加载图像和mask:
import torch
from torch.utils.data import Dataset, DataLoader
import albumentations as A
from albumentations.pytorch import ToTensorV2
import cv2
import numpy as np
class TransmissionLineDataset(Dataset):
def __init__(self, image_dir, mask_dir, transform=None):
self.image_dir = image_dir
self.mask_dir = mask_dir
self.transform = transform
self.images = list(Path(image_dir).glob('*'))
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = self.images[idx]
mask_path = Path(self.mask_dir) / (img_path.stem + '.png')
image = cv2.imread(str(img_path))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask = cv2.imread(str(mask_path), 0)
if self.transform is not None:
augmented = self.transform(image=image, mask=mask)
image = augmented['image']
mask = augmented['mask']
return image, mask
transform = A.Compose(
[
A.Resize(height=512, width=512),
A.Normalize(),
ToTensorV2(),
],
)
train_dataset = TransmissionLineDataset(image_dir='path/to/images', mask_dir='path/to/masks', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
4. UNet模型定义
定义UNet模型结构:
import torch.nn as nn
import torch.nn.functional as F
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
# 定义UNet的各个层(这里省略具体实现)
# ...
def forward(self, x):
# 定义前向传播逻辑
# ...
model = UNet()
参考UNet的原始论文或在线资源来填充UNet的具体实现细节。
5. 模型训练
编写训练循环:
import torch.optim as optim
from tqdm import tqdm
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
for epoch in range(epochs):
model.train()
loop = tqdm(train_loader)
for images, masks in loop:
images = images.to(device)
masks = masks.long().to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, masks)
loss.backward()
optimizer.step()
loop.set_postfix(loss=loss.item())
请根据需要调整损失函数criterion
和其他超参数。
6. 推理与可视化
最后,利用训练好的模型进行推理,并可视化结果:
model.eval()
with torch.no_grad():
for images, _ in train_loader:
images = images.to(device)
predictions = model(images)
_, predicted_masks = torch.max(predictions, dim=1)
# 使用opencv或其他库可视化predicted_masks
成功训练出针对输电线路的语义分割模型。