使用YOLOv8训练滑坡大规模多传感器滑坡检测数据集

滑坡大规模多传感器滑坡检测数据集,利用landsat,哨兵2,planet,无人机图像等多种传感器采集涵盖国内四川贵州,国外菲律宾印尼等地,数据共2w余副图像,mask准确标注滑坡位置。8GB数据量。在这里插入图片描述
数据集介绍

  1. 数据集概述
    数据集名称:大规模多传感器滑坡检测数据集
    数据来源:使用多种传感器采集,包括Landsat、Sentinel-2、Planet、无人机图像
    覆盖地区:国内四川、贵州,国外菲律宾、印尼等地
    图像数量:共2万余幅图像
    数据量:约8GB
    标签格式:Mask格式,准确标注滑坡位置
  2. 数据集结构
    假设你的数据集已经按照以下结构组织:

深色版本
landslide_dataset/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
└── masks/
├── train/
├── val/
└── test/
每个文件夹中包含对应的图像文件和掩码文件。确保所有图像文件都是.jpg格式,而掩码文件是.png格式,并且它们的名字与对应的图像文件相同。

数据集转换
由于YOLOv8需要标签文件为YOLO格式(即.txt文件),我们需要将Mask格式的标签文件转换为YOLO格式。

  1. 安装依赖
    确保你已经安装了必要的库:

bash

### YOLOv8滑坡检测中的使用方法 YOLOv8 是一种高效的实时目标检测框架,适用于多种场景的目标检测任务。以下是关于如何利用 YOLOv8 进行滑坡检测的具体方法和示例。 #### 1. 安装依赖 为了使用 YOLOv8,需先安装 Ultralytics 库及其相关依赖项。可以通过以下命令完成安装: ```bash pip install ultralytics ``` 此步骤确保环境具备运行 YOLOv8 所需的所有必要组件[^2]。 #### 2. 数据集准备 对于滑坡检测任务,需要收并整理标记好的数据集。通常采用 VOC 或 COCO 格式的标注文件。假设已有一个名为 `landslide_dataset` 的数据集,则其结构应如下所示: ``` landslide_dataset/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` 每张图像对应一个标签文件,存储为 `.txt` 文件,遵循 YOLO 格式[^4]。 #### 3. 配置 YOLOv8 创建一个 YAML 文件用于定义数据集路径和其他参数。例如,`data/landslide.yaml` 内容可能如下: ```yaml train: ../landslide_dataset/images/train val: ../landslide_dataset/images/val nc: 1 names: ['landslide'] ``` 上述配置指定了训练、验证的位置以及类别的名称和数量。 #### 4. 训练模型 通过 CLI 命令启动训练过程。下面是一个典型的训练指令: ```bash yolo task=detect mode=train model=yolov8n.pt data=data/landslide.yaml epochs=100 imgsz=640 ``` 该命令会加载预训练权重 (`yolov8n.pt`) 并针对自定义数据集调整网络参数。 #### 5. 模型评估 训练结束后,可调用内置工具对模型性能进行量化分析。执行以下命令即可获得详细的指标报告: ```bash yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=data/landslide.yaml ``` 这一步骤有助于确认模型是否达到预期效果[^3]。 #### 6. 可视化预测结果 借助 Python API 实现更灵活的结果展示功能。代码片段如下: ```python from ultralytics import YOLO model = YOLO('runs/detect/train/weights/best.pt') results = model.predict(source='test_images', save=True, save_txt=True) for r in results: boxes = r.boxes.xyxy.cpu().numpy() # 获取边界框坐标 confidences = r.boxes.conf.cpu().numpy() # 提取置信度分数 class_ids = r.boxes.cls.cpu().numpy() # 类别索引 ``` 这段脚本不仅保存了检测图片还记录下了具体数值信息以便进一步处理。 #### 7. 构建 GUI 应用程序 如果计划开发图形界面供实际部署使用,推荐选用 PyQt 或 Tkinter 等库辅助实现交互逻辑。这里仅给出简单框架示意: ```python import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget from ultralytics import YOLO class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("Slip Detection App") layout = QVBoxLayout() button = QPushButton("Run Slip Detection") button.clicked.connect(self.run_detection) layout.addWidget(button) container = QWidget() container.setLayout(layout) self.setCentralWidget(container) def run_detection(self): model = YOLO('runs/detect/train/weights/best.pt') result = model('input_image.jpg')[0] print(result.names) # 输出分类名列表 if __name__ == '__main__': app = QApplication(sys.argv) window = MainWindow() window.show() app.exec_() ``` 这个例子展示了基本的操作流程,可根据需求扩展更多特性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值