如何yolov8训练使用——电塔电线电线杆缺陷检测数据集 10000张 带标注 voc yolo 电线杆子缺陷数据集输电线塔缺陷数据集

在这里插入图片描述
都有对应标注,格式VOC (XML),选配Y0L0(TXT) .
label| pic_ num| box_ num
绑扎不规范: (3717, 14510)
并线线夹保护壳缺失: (3317, 11285)
耐张线夹保护壳缺失: (3748, 16148)
横杆腐蚀: (987, 1556)
塔头损坏: (972, 1021)
total: (9838, 44520)
在这里插入图片描述
在这里插入图片描述
电力电塔电线缺陷检测数据集统计表
标签名称 图片数量 边框数量
绑扎不规范 (绑扎不规范) 3717 14510
并线线夹保护壳缺失 (并线线夹保护壳缺失) 3317 11285
耐张线夹保护壳缺失 (耐张线夹保护壳缺失) 3748 16148
横杆腐蚀 (横杆腐蚀) 987 1556
塔头损坏 (塔头损坏) 972 1021
总计 9838 44520
项目结构
深色版本
power_line_defect_detection/
├── dataset/
│ ├── images/
│ │ └── *.jpg
│ ├── labels_voc/
│ │ └── *.xml
│ ├── labels_yolo/
│ │ └── *.txt
├── models/
│ └── yolov8/
├── src/
│ ├── train.py
│ ├── predict.py
│ ├── utils.py
│ ├── convert_voc_to_yolo.py
├── weights/
│ └── best_model.pt
├── requirements.txt
└── README.md

  1. 安装依赖
    首先,确保你已经安装了必要的库。创建一个requirements.txt文件,内容如下:

深色版本
torch
torchvision
numpy
pandas
matplotlib
tqdm
pyyaml
opencv-python
ultralytics
lxml
然后,使用以下命令安装依赖:

bash
深色版本
pip install -r requirements.txt
2. 数据集准备
确保你的数据集已经按照以下结构组织:

深色版本
dataset/
├── images/
│ └── *.jpg
├── labels_voc/
│ └── *.xml
├── labels_yolo/
│ └── *.txt
每个文件夹中包含对应的图像文件和标签文件。确保所有图像文件都是.jpg格式,标签文件是VOC格式的.xml文件和YOLO格式的.txt文件。

  1. 数据集转换工具
    为了方便使用YOLOv8模型,我们需要将VOC格式的标注文件转换为YOLO格式。可以使用以下脚本进行转换。

3.1 src/convert_voc_to_yolo.py
python
深色版本
import os
import xml.etree.ElementTree as ET
import shutil

def convert_voc_to_yolo(voc_dir, yolo_dir, class_names, image_size=(640, 640)):
os.makedirs(yolo_dir, exist_ok=True)

for xml_file in os.listdir(voc_dir):
    if not xml_file.endswith('.xml'):
        continue

    t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值