结合创新!transformer+特征融合新突破

2024深度学习发论文&模型涨点之——Transformer+特征融合

Transformer和特征融合的结合是一种在计算机视觉领域中非常活跃的研究领域,它旨在通过结合Transformer的自注意力机制和特征融合技术来提高模型的性能、降低计算成本以及提升模型泛化能力。

我整理了一些Transformer+特征融合【论文+代码】合集,以下放出部分,全部可在公人人人号【AI创新工场】自取。

论文精选

论文1:

HiFuse: Hierarchical multi-scale feature fusion network for medical image classification

HiFuse:用于医学图像分类的层次化多尺度特征融合网络

方法

  • 三分支层次多尺度特征融合网络结构:结合了Transformer和CNN的优势,从多尺度层次中融合特征,以提高各种医学图像的分类准确性。

  • 局部和全局特征块的并行层次:设计用于在不同语义尺度上高效提取局部特征和全局表示。

  • 适应性层次特征融合块(HFF块):包含空间注意力、通道注意力、残差逆MLP和快捷连接,以自适应地融合不同层次尺度特征的语义信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值