2024深度学习发论文&模型涨点之——Transformer+特征融合
Transformer和特征融合的结合是一种在计算机视觉领域中非常活跃的研究领域,它旨在通过结合Transformer的自注意力机制和特征融合技术来提高模型的性能、降低计算成本以及提升模型泛化能力。
我整理了一些Transformer+特征融合【论文+代码】合集,以下放出部分,全部可在公人人人号【AI创新工场】自取。
论文精选
论文1:
HiFuse: Hierarchical multi-scale feature fusion network for medical image classification
HiFuse:用于医学图像分类的层次化多尺度特征融合网络
方法
-
三分支层次多尺度特征融合网络结构:结合了Transformer和CNN的优势,从多尺度层次中融合特征,以提高各种医学图像的分类准确性。
-
局部和全局特征块的并行层次:设计用于在不同语义尺度上高效提取局部特征和全局表示。
-
适应性层次特征融合块(HFF块):包含空间注意力、通道注意力、残差逆MLP和快捷连接,以自适应地融合不同层次尺度特征的语义信息。