2025深度学习发论文&模型涨点之——可解释GNN
图神经网络(Graph Neural Networks, GNNs)因其强大的图结构数据建模能力,在社交网络分析、分子结构预测、推荐系统等领域取得了显著成果。然而,由于GNN固有的黑箱特性,其决策过程往往缺乏透明性,这严重限制了其在医疗诊断、金融风控等高风险场景中的应用。为此,可解释图神经网络(Explainable GNNs)逐渐成为学术界与工业界共同关注的核心议题。通过融合图论、拓扑学与可解释人工智能(XAI)技术,研究者们提出了从模型内在设计到事后解释的一系列创新方法,包括但不限于注意力机制、子结构挖掘、以及基于因果推理的解释框架。
我整理了一些可解释GNN【论文+代码】合集,需要的同学公人人人号【AI创新工场】发525自取。
论文精选
论文1:
[WWW] GraphPro: Graph Pre-training and Prompt Learning for Recommendation
GraphPro:用于推荐的图预训练和提示学习
方法
动态图预训练:通过在大规模历史交互数据上预训练图神经网络(GNN),捕捉长期用户偏好和项目相关性。
时间提示机制:引入时间提示机制,将时间信息编码到用户-项目交互的边属性中,使模型能够自然地适应时间动态变化。
图结构提示学习:利用预训练和微调期间生成的交互边作为提示边,通过非训练前向传播将预训练模型的嵌入适应到新的行为动态。
动态评估框架:提出一种基于快照的动态评估框架,更贴近真实世界的推荐场景,缩小离线和在线评估之间的差距。
创新点
时间感知能力:通过时间提示机制,模型能够捕捉用户偏好的动态变化,提升推荐的时效性和准确性。
结构提示学习:图结构提示学习机制允许模型在不进行连续增量学习的情况下,将预训练知识无缝迁移到下游推荐任务中,显著提高了模型的适应性和效率。
性能提升:在多个真实世界数据集上的实验表明,GraphPro在动态推荐场景中优于现有的最先进方法,平均Recall和nDCG指标分别提升了约4.5%和3.2%。
冷启动问题:GraphPro在处理冷启动用户时表现出色,即使在没有用户历史数据的情况下,也能通过结构提示学习提供准确的推荐。
模型灵活性:GraphPro是一个模型不可知的框架,可以轻松集成到现有的GNN推荐系统中,作为插件增强其动态适应能力。
论文2:
[ICLR] STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS
图神经网络的预训练策略
方法
节点级预训练:通过自监督学习任务(如上下文预测和属性掩蔽)捕捉图中节点的局部结构信息。
图级预训练:通过多任务监督学习预测图的全局属性,如分子性质或蛋白质功能。
联合预训练策略:结合节点级和图级预训练,使模型同时学习局部和全局的图表示。
自监督学习方法:开发了多种自监督学习方法,如Deep Graph Infomax和Graph Contrastive Learning,以提高图表示的鲁棒性和泛化能力。
创新点
联合预训练:提出了一种新的预训练策略,通过同时在节点级和图级进行预训练,避免了负迁移,显著提高了模型在下游任务中的泛化能力。
性能提升:与非预训练模型相比,该策略在分子性质预测和蛋白质功能预测任务中平均ROC-AUC提升了9.4%,在某些任务中甚至达到了5.2%的提升。
模型适应性:该策略对不同的图神经网络架构(如GIN、GCN、GraphSAGE和GAT)都有效,尤其是对表达能力最强的GIN模型,预训练带来了更大的性能提升。
训练效率:预训练模型在微调阶段的训练和收敛速度比非预训练模型快几个数量级,大大减少了训练时间和计算成本。
论文3:
[NIPS] Universal Prompt Tuning for Graph Neural Networks
图神经网络的通用提示调整
方法
图提示特征(GPF):提出了一种通用的提示调整方法,通过在输入图的特征空间中添加共享的可学习向量来调整图表示。
图提示特征增强版(GPF-plus):进一步引入了节点级别的可学习向量,为每个节点提供独立的提示特征,增强了模型的表达能力。
理论分析:通过严格的数学推导,证明了GPF和GPF-plus能够实现与任何提示函数等效的效果,无需为每种预训练策略显式设计提示函数。
实验验证:在多种预训练策略和下游任务上验证了GPF和GPF-plus的有效性,展示了其在全样本和少样本场景下的优越性能。
创新点
通用性:GPF和GPF-plus能够适应任何预训练策略,无需针对每种策略设计特定的提示函数,大大提高了方法的通用性和适用性。
性能提升:在全样本场景下,GPF和GPF-plus相比微调平均提升了约1.4%;在少样本场景下,平均提升了约3.2%。
超越现有方法:在针对特定预训练策略的提示调整方法中,GPF和GPF-plus显著优于现有的专门方法,平均性能提升超过12%。
理论保证:提供了理论分析,证明了GPF和GPF-plus在某些情况下能够实现比微调更好的理论调整结果,为方法的有效性提供了坚实的数学基础。
参数效率:GPF和GPF-plus在调整过程中使用的可调参数数量远少于微调,显著减少了训练时间和存储空间的需求。