2025深度学习发论文&模型涨点之——时空预测
时空预测作为跨学科研究的核心领域,近年来在理论方法与应用层面均取得了显著进展。其本质在于通过融合时空依赖性建模与动态系统演化规律,实现对复杂系统中时空序列的精准预测。从方法论角度看,现有研究可划分为三大范式:基于统计建模的经典方法(如ST-ARIMA、层次贝叶斯模型)、基于机器学习的混合方法(如时空图神经网络、注意力机制增强的LSTM),以及基于物理机理的耦合方法(如神经微分方程与数值模型的联合建模)。值得注意的是,2023年发表在NeurIPS上的综述指出,时空预测的瓶颈问题已从传统的数据稀缺转变为对异质性时空尺度的协同建模挑战(Zhang et al., NeurIPS 2023)。
我整理了一些时空预测【论文+代码】合集,需要的同学公人人人号【AI创新工场】发525自取。
论文精选
论文1:
[Nature子刊] Learning spatiotemporal dynamics with a pretrained generative model
利用预训练生成模型学习时空动力学
方法
两阶段学习框架:提出了一种基于稀疏传感器的分数阶基于分数的生成模型(S3GM),该框架包括预训练阶段和生成阶段。在预训练阶段,模型通过自监督学习的方式学习时空数据的联合分布;在生成阶段,利用稀疏传感器信息引导全场地时空动力学的生成。
预训练模型:使用无条件生成模型捕捉大量预训练数据的联合分布,隐式编码了动态系统的先验物理知识。
条件生成:在生成阶段,将稀疏传感器信息纳入采样过程,通过求解随机微分方程(SDE)生成满足测量和先验知识的全场地时空动力学。
创新点
零样本重建:首次提出在没有成对训练数据的情况下,仅通过预训练模型和稀疏测量实现时空动力学的重建和预测,显著提升了模型在稀疏数据条件下的泛化能力。
性能提升:在多个动态系统(包括Kuramoto–Sivashinsky动力学、Kolmogorov湍流、ERA5气候观测和圆柱流动力学)上验证了模型的性能,相比现有方法,S3GM在高数据稀疏度和噪声水平下仍能保持较高的重建精度和预测稳定性,误差降低高达40%。
鲁棒性增强:模型在处理不同类型稀疏测量(如随机放置的传感器、不完整的传感器类型和压缩信息)时表现出色,即使在极端稀疏条件下也能准确重建时空场,显著提高了模型的鲁棒性。
论文2:
[Nature子刊] Scalable spatiotemporal prediction with Bayesian neural fields
利用贝叶斯神经场进行可扩展的时空预测
方法
贝叶斯神经场(BAYESNF):提出了一种结合深度神经网络架构和层次贝叶斯推断的领域通用统计模型,用于时空数据分析任务,包括预测、插值和变异函数分析。
傅里叶特征与激活函数:通过傅里叶特征和激活函数的凸组合,模型能够学习时空数据的复杂分布,并提供预测不确定性量化。
变分推断:采用变分推断方法近似后验分布,通过最大似然估计和变分推断相结合的方式进行参数优化。
创新点
性能提升:在多个大规模时空数据集上验证了模型的预测性能,相比现有的高斯过程和深度学习方法,BAYESNF在点预测和区间预测的准确性上分别提升了15%和20%。
可扩展性增强:通过深度神经网络架构,BAYESNF能够在大规模数据集上实现线性时间复杂度的推断,相比传统的高斯过程方法,计算效率提高了3个数量级。
不确定性量化:模型通过层次贝叶斯推断提供了预测不确定性量化,能够更好地处理时空数据中的噪声和不确定性,显著提高了模型的鲁棒性。
论文3:
Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting
时空解耦掩码预训练用于时空预测
方法
时空解耦掩码预训练框架(STD-MAE):提出了一种时空解耦掩码预训练框架,通过两个解耦的掩码自编码器分别在空间和时间维度上重建时空序列。
掩码策略:采用空间掩码(S-Mask)和时间掩码(T-Mask)策略,分别对传感器的时间序列和时间步进行随机掩码,强制模型学习长距离的时空上下文。
下游预测器集成:将预训练生成的时空表示无缝集成到下游预测器中,通过添加预训练表示增强预测器的性能。
创新点
性能提升:在六个基准数据集(PEMS03、PEMS04、PEMS07、PEMS08、METR-LA和PEMS-BAY)上验证了STD-MAE的性能,相比现有方法,平均预测误差降低了10%至15%。
时空异质性建模:通过时空解耦掩码策略,模型能够有效学习时空数据中的复杂异质性,显著提高了对时空幻象问题的鲁棒性。
通用性增强:STD-MAE能够与任意架构的下游预测器无缝集成,无需修改预测器的原始结构,显著提高了模型的通用性和适用性。