PSM-DID(分组、diff检验、平行趋势检验、安慰剂检验)

在Stata中进行多期的PSM-DID(Propensity Score Matching Difference-in-Differences)分析,可以使用以下代码来实现: 首先,使用命令`psmatch2`进行倾向得分匹配。假设我们有一个处理组变量`treated`、一个处理期变量`p`,以及其他协变量`cov`,可以使用以下命令进行匹配: ``` psmatch2 treated p, kernel id(id) logit cov(bk kfc roys) ``` 接下来,可以使用命令`test`来检验匹配后各变量在实验组与对照组之间的平衡性: ``` test ``` 如果协变量在实验组与对照组之间存在显著差异,说明匹配可能不理想,需要进一步检查数据集的适用性。 此外,可以生成回归系数来进行进一步的分析。例如,可以使用以下命令生成时间变量`time`(用于后续的差分处理)以及虚拟变量`treat`和`did`(用于估计差分处理效应): ``` gen time = (year>=2012) gen treat = T gen did = time * treat ``` 以上是使用Stata进行多期PSM-DID分析的一些基本步骤和代码示例。具体的分析流程和代码可能因数据集和研究问题的不同而有所调整。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [双重差分法|DID|PSM|平行趋势检验|安慰剂检验|Stata代码](https://blog.csdn.net/weixin_54484297/article/details/128153658)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [stata psm命令_PSMDID在STATA中的操作——一个概述](https://blog.csdn.net/weixin_39638708/article/details/111373357)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值