DID 安慰剂检验的 Stata 具体操作步骤

目录

一、引言

二、理论原理

三、数据准备

四、安装所需命令

五、基础 DID 模型估计

六、生成随机处理组变量

七、进行安慰剂检验

八、分析安慰剂检验结果

九、结论


一、引言

双重差分法(Difference-in-Differences,DID)是政策评估中常用的一种方法。在使用 DID 进行分析时,安慰剂检验是一种重要的稳健性检验方法,用于验证估计结果是否是由于偶然因素或其他未观察到的因素导致的。

二、理论原理

DID 方法的基本原理是通过比较处理组在政策实施前后的变化与控制组在相同时间区间内的变化,来分离出政策的净效应。其核心假设是在没有政策干预的情况下,处理组和控制组的结果变量会遵循相同的时间趋势。

然而,我们所得到的 DID 估计结果可能会受到一些偶然因素或未观测到的因素的影响,导致结果出现偏差。安慰剂检验的理论基础就在于通过多次随机分配处理组和控制组,模拟出在没有真实政策影响下的估计结果分布。如果我们实际观测到的处理效应远远超出了这个随机分布的范围,那么就可以更有信心地认为我们所得到的估计结果是真实的政策效应,而非偶然因素导致的。

例如,假设我们研究一项教育改革政策对学生成绩的影响。在没有政策干预的情况下,学生的成绩可能会由于其他因素(如家庭环境、学校师资变化等)而自然波动。通过安慰剂检验,我们随机地指定一些学生为“处理组”,即使他们实际上没有受到政策影响,然后观察得到的“效应”。如果我们实际观测到的政策效应与这些随机产生的“效应”有显著差异,就更能确信政策是真正起作用的。

三、数据准备

首先,我们需要准备一份包含处理组和控制组、政策实施前后时间以及相关结果变量的数据。以下是一个简单的示例数据集,假设我们研究某政策对企业销售额的影响:

clear
input str10 firm treat time sales
"Firm1" 0 0 100
"Fir
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值