双重差分与稳健性检验原理
双重差分法
- 以两期面板为例
- 数据采用cardkrueger1994.dta,可在陈强老师个人主页《高级计量经济学及Stata应用》, 第2版下载数据集
基本模型
y i t = α + γ D t + β x i t + u i + ϵ i t ( 1 ) y_{it}=\alpha + \gamma D_t + \beta x_{it} + u_i + \epsilon_{it} (1) yit=α+γDt+βxit+ui+ϵit(1)
D t = { 1 , i f t = 2 0 , i f t = 0 D_t=\left\{ \begin{aligned} 1,& if& & t = 2&\\ 0,& if& & t = 0& \end{aligned} \right. Dt={
1,0,ifift=2t=0
x i t = { 1 , i f i ∈ T r e a t a n d t = 2 0 , i f e l s e x_{it}=\left\{ \begin{aligned} 1, &if& & i∈Treat&& and&& t = 2&\\ 0, &if&& else&\\ \end{aligned} \right. xit={ 1,0,ififi∈Treatelseandt=2
-
t = 1时
-
控制组
y c o n t r o l , t = 1 = α + γ D t = 1 + β x c o n t r o l , t = 1 + u c o n t r o l + ϵ c o n t r o l , t = 1 = α + u c o n t r o l + ϵ c o n t r o l , t = 1 y_{control,t=1}=\alpha + \gamma D_{t=1} + \beta x_{control,t=1} + u_{control} + \epsilon_{control,t=1} \\ = \alpha + u_{control} + \epsilon_{control,t=1} ycontrol,t=1=α+γDt=1+βxcontrol,t=1+ucontrol+ϵcontrol,t=1=α+ucontrol+ϵcontrol,t=1 -
处理组
y t r e a t , t = 1 = α + γ D t = 1 + β x t r e a t , t = 1 + u t r e a t + ϵ t r e a t , t = 1 = α + u t r e a t + ϵ t r e a t , t = 1 y_{treat,t=1}=\alpha + \gamma D_{t=1} + \beta x_{treat,t=1} + u_{treat} + \epsilon_{treat,t=1}\\ = \alpha + u_{treat} + \epsilon_{treat,t=1} ytreat,t=1=α+γDt=1+βxtreat,t=1+utreat+ϵtreat,t=1=α+utreat+ϵtreat,t=1 -
t = 2时
-
控制组