双重差分法|DID|PSM|平行趋势检验|安慰剂检验|Stata代码

双重差分与稳健性检验原理

双重差分法

基本模型

y i t = α + γ D t + β x i t + u i + ϵ i t ( 1 ) y_{it}=\alpha + \gamma D_t + \beta x_{it} + u_i + \epsilon_{it} (1) yit=α+γDt+βxit+ui+ϵit1
D t = { 1 , i f t = 2 0 , i f t = 0 D_t=\left\{ \begin{aligned} 1,& if& & t = 2&\\ 0,& if& & t = 0& \end{aligned} \right. Dt={ 1,0,ifift=2t=0

x i t = { 1 , i f i ∈ T r e a t a n d t = 2 0 , i f e l s e x_{it}=\left\{ \begin{aligned} 1, &if& & i∈Treat&& and&& t = 2&\\ 0, &if&& else&\\ \end{aligned} \right. xit={ 1,0,ififiTreatelseandt=2

  • t = 1时

  • 控制组
    y c o n t r o l , t = 1 = α + γ D t = 1 + β x c o n t r o l , t = 1 + u c o n t r o l + ϵ c o n t r o l , t = 1 = α + u c o n t r o l + ϵ c o n t r o l , t = 1 y_{control,t=1}=\alpha + \gamma D_{t=1} + \beta x_{control,t=1} + u_{control} + \epsilon_{control,t=1} \\ = \alpha + u_{control} + \epsilon_{control,t=1} ycontrol,t=1=α+γDt=1+βxcontrol,t=1+ucontrol+ϵcontrol,t=1=α+ucontrol+ϵcontrol,t=1

  • 处理组
    y t r e a t , t = 1 = α + γ D t = 1 + β x t r e a t , t = 1 + u t r e a t + ϵ t r e a t , t = 1 = α + u t r e a t + ϵ t r e a t , t = 1 y_{treat,t=1}=\alpha + \gamma D_{t=1} + \beta x_{treat,t=1} + u_{treat} + \epsilon_{treat,t=1}\\ = \alpha + u_{treat} + \epsilon_{treat,t=1} ytreat,t=1=α+γDt=1+βxtreat,t=1+utreat+ϵtreat,t=1=α+utreat+ϵtreat,t=1

  • t = 2时

  • 控制组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值