springboot问题投诉办理系统-毕业设计源码23785

目  录

摘要

1 绪论

1.1 选题背景与意义

1.2国内外研究现状

1.3论文结构与章节安排

2 问题投诉办理系统系统分析

2.1 可行性分析

2.1.1 技术可行性分析

2.1.2 经济可行性分析

2.1.3 法律可行性分析

2.2 功能需求分析

2.2.1 功能性分析

2.2.2 非功能性分析

2.3  系统流程分析

2.3.1数据增加流程

2.3.2 数据修改流程

2.3.3 数据删除流程

2.4本章小结

3 问题投诉办理系统总体设计

3.1 系统功能模块设计

3.2 数据库设计

3.2.1 数据库概念结构设计

3.2.2 数据库逻辑结构设计

3.3本章小结

4 问题投诉办理系统详细设计与实现

4.1 用户注册界面

4.2 用户登录界面

4.3用户管理模块

4.4投诉信息管理模块

4.5投诉分派管理模块

4.6沟通信息管理模块

4.7处理结果管理模块

4.8 权限管理模块

5系统测试

5.1 系统测试用例

5.2 系统测试结果

结论

参考文献

致  谢

  要

在当今社会,问题投诉已成为各个行业中不可避免的一部分。随着互联网和信息技术的发展,越来越多的人倾向于使用在线平台提交问题投诉,以便更快速地解决问题并获得满意的解决方案。然而,许多组织和机构在处理问题投诉时仍然面临一些挑战。

传统的问题投诉处理方式往往繁琐而低效。用户需要通过电话、邮件或纸质表格等方式提交投诉,并经历漫长的等待过程才能获得回应。管理人员也难以对问题进行有效的分类、分配和跟踪,导致问题处理的延迟和混乱。

主要功能包括用户管理、问题投诉管理、工单处理和数据统计等模块。用户可以通过系统进行注册和登录,随时提交问题投诉,并实时查看问题处理进度。管理员可以对问题进行分类和分配给相应的处理人员,同时跟踪问题的解决情况。系统还提供数据统计功能,以分析问题投诉的趋势和处理效率。

在系统开发过程中,使用了多种Spring Boot相关技术和组件,如Spring MVC、Spring Data JPA和Thymeleaf等,来实现各项功能。此外,MySQL数据库用于存储用户信息和问题数据,而Elasticsearch则用于实现问题的全文搜索功能。

通过系统的测试和评估,验证了系统的可行性和有效性。用户反馈显示,该系统具有良好的用户体验和操作便捷性,将提升问题投诉办理的效率,为用户和管理人员提供更好的服务。

关键词:Java;SpringBoot;问题投诉办理系统;MySQL

Abstract

In today's society, problem complaints have become an inevitable part of various industries. With the development of the Internet and information technology, more and more people tend to use online platforms to submit problem complaints in order to solve problems more quickly and obtain satisfactory solutions. However, many organizations and institutions still face some challenges in handling problem complaints.

The traditional way of handling complaints is often cumbersome and inefficient. Users need to submit complaints through phone, email, or paper forms, and go through a long waiting process to receive a response. Managers also find it difficult to effectively classify, allocate, and track issues, resulting in delays and confusion in problem handling.

The main functions include user management, problem complaint management, work order processing, and data statistics modules. Users can register and log in through the system, submit problem complaints at any time, and view the progress of problem handling in real time. Administrators can classify and assign issues to corresponding personnel, while tracking the resolution of issues. The system also provides data statistics function to analyze the trend of problem complaints and improve processing efficiency.

During the system development process, various Spring Boot related technologies and components were used, such as Spring MVC, Spring Data JPA, and Thymeneaf, to achieve various functions. In addition, MySQL databases are used to store user information and problem data, while Elasticsearch is used to implement full-text search functionality for problems.

The feasibility and effectiveness of the system have been verified through system testing and evaluation. User feedback shows that the system has a good user experience and operational convenience, which will improve the efficiency of problem complaint handling and provide better services for users and management personnel.

Keywords: Java; SpringBoot; Problem complaint handling system; MySQL

1 绪论

1.1 选题背景与意义

在现代社会中,问题和投诉是不可避免的。无论是在家庭、学校、工作场所还是在购买商品和享受服务过程中,人们都可能遇到各种问题和投诉。而对于解决问题和处理投诉的效率和质量,对于维护公平、公正和良好的社会秩序具有重要意义。因此,建立一个高效的问题投诉办理系统是至关重要的。

在传统的问题投诉办理中,人们通常需要亲自前往相关部门或机构,填写申请表格,提交证据材料,并进行耐心的等待才能得到解决。这样的方式不仅浪费了大量的时间和精力,而且办理过程往往复杂、效率低下,给人们的生活和工作带来了不便。

随着信息技术的迅速发展,互联网的普及和移动通信技术的成熟,电子政务逐渐成为一种趋势,为问题投诉的办理提供了新的可能。通过建立一个问题投诉办理系统,人们可以方便地通过网络或手机应用程序提交问题和投诉,并即时得到反馈和处理结果。这种方式不仅节省了时间和精力,提高了办理效率,还能够减少人为因素的干扰,提高办理的公正和透明度。通过网络和移动通信技术,问题和投诉可以实现匿名提交,并且办理过程可以被记录和监督,减少了人为因素的干扰,提高了办理的公正和透明度。而且问题投诉办理系统可以提供数据支持和决策参考。通过记录和分析问题和投诉的数据,相关部门和机构可以了解社会的关注点和问题热点,优化服务和管理,提高工作的质量和效益。

1.2国内外研究现状

问题投诉是人们在生活和工作中常常面临的一种情况,涉及消费者权益、公共服务质量、环境保护等多个领域。为了有效处理和解决问题投诉,许多国家和地区建立了问题投诉办理系统,以保障公民权益、维护社会秩序和促进政府与公民之间的互动和沟通。

在中国,问题投诉办理系统已经成为政府部门和社会组织的常规工作之一。一些大、中型城市建立了完善的12315热线投诉平台,提供便捷的投诉渠道给予公众投诉建议的闭环反馈和问题解决方案。同时,也有不少学者和研究机构对问题投诉办理系统进行了深入研究,探讨了其在提高政府效能、促进社会和谐等方面的作用。国内一些学者研究表明,问题投诉办理系统在强化政府公信力、提高政府管理效率、改善公共服务质量等方面发挥了积极的作用。同时,也有研究指出,问题投诉办理系统还存在着信息不对称、办理效率不高、结果公正不公平等问题,需要进一步完善和提升。

在国外,各国也建立了不同形式的问题投诉办理系统,以解决公民的诉求和问题。例如,美国的消费者保护局、英国的公共服务投诉委员会等机构都致力于提供投诉受理、调查处理等服务,保障公民权益。同时,一些国际组织如联合国、欧盟也在这一领域提供了支持和指导。国外的研究普遍关注问题投诉办理系统的规范化、透明化、效率化等方面,强调公众参与、社会监督的重要性。一些研究还指出,国外的问题投诉办理系统在促进政府与公民之间的互动、增强社会信任等方面有着重要的作用,为其他国家和地区提供了借鉴和参考。

总体来说,问题投诉办理系统在国内外都具有重要意义,尤其是在构建和谐社会、提升政府治理水平等方面发挥着不可替代的作用。通过深入研究国内外的相关案例和经验,可以为我国问题投诉办理系统的进一步改进和完善提供有益的借鉴和启示。

1.3论文结构与章节安排

(1)系统采用前后端分离的开发模式,使得前端和后端可以独立开发和维护,提高了开发效率和系统的可维护性。

(2)系统采用微服务架构,将系统拆分成多个独立的服务,每个服务可以独立部署和扩展,提高了系统的灵活性和可扩展性。

(3)系统采用 Docker 容器化部署技术,使得系统可以快速部署和迁移,提高了系统的可靠性和可移植性。

(4)系统采用自动化测试技术,包括单元测试、接口测试和性能测试等,提高了系统的稳定性和可靠性。

(5)系统采用安全保障技术,包括用户认证、授权、数据加密等,保障了系统的安全性和用户的隐私。

这些技术特色使得SpringBoot问题投诉办理系统具有高效、稳定、可靠、安全等优点,能够满足用户的需求和提高用户的体验。

2 问题投诉办理系统系统分析

系统需求分析是确保系统开发成功的关键环节之一。它在系统设计和实施中扮演着承上启下的角色。通过系统需求分析,可以准确挖掘出系统的需求,以精确解决现实中遇到的问题。若需求分析不到位,将对后续系统实现产生负面影响。

系统的优秀程度很大程度上取决于需求分析的准确性。充分完善的需求分析能够确保系统满足用户实际需求,并为设计和实施提供正确导向。相反,若需求分析不到位,则可能导致后续系统设计和实现偏离预期,无法达到用户期望。

因此,在系统开发过程中,系统需求分析具有重要地位。需要深入理解用户需求,与利益相关者进行有效沟通,并进行详尽的需求挖掘和分析。包括收集用户需求、定义功能和非功能需求、制定用户故事和用例等。只有经过充分准确的需求分析,方能为后续系统设计和实现奠定良好基础。

2.1 可行性分析

可行性分析是系统开发过程中的重要环节,旨在评估项目的可行性和可实施性。通过综合分析技术、经济、法律和操作等方面,判断项目是否值得投资和实施。

2.1.1 技术可行性分析

SpringBoot问题投诉办理系统的开发中,我们使用了MySQL数据库作为数据存储,并借助IDEA、Tomcat等开发工具来提高开发效率和便利性。MySQL作为可靠的关系型数据库管理系统,能够高效地存储和管理系统所需的各种数据。IDEA作为开发工具,提供了丰富的功能和友好的开发环境,帮助我们更好地进行代码编写和调试。Tomcat作为Java Web服务器,能够方便地部署和运行基于SpringBoot框架的系统。

2.1.2 经济可行性分析

在开发SpringBoot问题投诉办理系统时,我们选择了一些开源免费的开发软件和技术,如IDEA开发工具、Tomcat 8.0服务器、MySQL 5.7数据库以及Photoshop图片处理软件。这些工具和技术的使用不仅提供了强大的功能和便捷的开发环境,而且还能够降低系统开发成本。通过使用IDEA进行编码和调试,Tomcat作为服务器进行部署,MySQL作为数据存储解决方案,以及Photoshop进行界面设计和图片处理,我们能够自主设计并实现校园地图导览系统。而采用开源的MySQL等技术,不仅保证了系统的稳定性和可靠性,还有效地降低了开发成本。

2.1.3 法律可行性分析

需要评估系统是否符合适用的法律法规。特别是在数据保护和隐私方面,如《个人信息保护法》等相关法律法规的遵守,以确保用户的个人信息安全和合法使用。

2.2 功能需求分析

2.2.1 功能性分析

问题投诉办理系统主要分为普通用户模块、员工用户模块和管理员模块三个部分,并且每个角色的用户有不同的功能需求。

普通用户模块是系统的主要功能模块之一。普通用户通过前台页面注册账号并提交投诉信息。在管理员审核通过后,用户可以登录系统并进行一系列的问题投诉办理流程操作。具体包括提交投诉信息、等待分配给员工用户、反馈补充或与员工用户沟通、随时查看投诉进展等。最终,用户将等待处理结果,完成投诉信息后还可以对本次服务进行评价。

除了普通用户模块,还有其他具体功能模块。其中,投诉信息管理模块用于管理用户提交的投诉信息;投诉分派管理模块负责将投诉任务分配给相应的员工用户;反馈补充管理模块用于处理用户对投诉信息的反馈补充;投诉进展管理模块用于跟踪和管理投诉的进展情况;沟通信息管理模块用于记录用户与员工用户之间的沟通信息;沟通回复管理模块则用于管理员工用户对用户的沟通回复;处理结果管理模块用于记录和管理问题投诉的最终处理结果;用户评价管理模块则负责管理用户对服务的评价情况。

图2-1就是普通用户角色的用例展示。

图2-1 问题投诉办理系统普通用户角色用例图

员工用户模块也是问题投诉办理系统的一个重要功能模块。

员工用户通过前台页面注册账号,并经过管理员审核通过后方可登录系统。一旦登录系统,员工用户主要负责处理用户的投诉信息。具体而言,员工用户会接收到管理员分派的投诉任务,并可以查看用户提交的投诉信息。在处理过程中,员工用户可以与用户进行沟通,更新投诉的进展情况并提供处理结果。

具体的功能模块包括投诉分派管理模块,用于管理员将投诉任务分派给相应的员工用户;反馈补充管理模块,用于员工用户处理用户对投诉信息的反馈补充;投诉进展管理模块,用于跟踪和管理投诉的进展情况;沟通信息管理模块,用于记录员工用户与用户之间的沟通信息;沟通回复管理模块,用于员工用户对用户的沟通回复;处理结果管理模块,用于记录和管理问题投诉的最终处理结果;用户评价管理模块,用于管理用户对员工用户服务的评价情况。图2-2就是员工用户角色的用例展示。

图2-2 问题投诉办理系统员工用户角色用例图

管理员登录系统后,主要负责对普通用户和员工用户的注册账号进行审核工作。在这个过程中,管理员需要对用户提交的账号信息进行审查,并决定是否通过审核。除此之外,管理员还需要处理一系列与问题投诉相关的信息,包括投诉信息管理、投诉分派管理、反馈补充管理、投诉进展管理、沟通信息管理、沟通回复管理、处理结果管理、用户评价管理以及权限管理等主要模块。

具体而言,投诉信息管理模块用于管理员对所有投诉信息进行管理和维护;投诉分派管理模块则负责将投诉任务分派给相应的员工用户;反馈补充管理模块用于处理用户对投诉信息的反馈补充;投诉进展管理模块用于跟踪和管理投诉的进展情况;沟通信息管理模块用于记录管理员与用户或员工用户之间的沟通信息;沟通回复管理模块则用于管理员对用户或员工用户的沟通回复;处理结果管理模块用于记录和管理问题投诉的最终处理结果;用户评价管理模块则负责管理用户对服务的评价情况;权限管理模块用于管理系统中各个角色的权限设置。图2-3就是管理员角色的用例展示。

图2-3 问题投诉办理系统管理员角色用例图

2.2.2 非功能性分析

在问题投诉办理系统中,除了功能模块的设计和实现外,非功能性需求也是十分重要的。以下是对问题投诉办理系统的非功能性分析:

(1)可用性:系统应具备良好的可用性,即用户能够轻松地使用系统进行投诉办理,并且系统应保持高可靠性,避免出现频繁的故障或停机时间。

(2)安全性:系统应具备良好的安全性,确保用户的个人信息和投诉内容得到保护,防止未经授权的访问和数据泄露。

(3)性能:系统应具备良好的性能,即能够在合理的响应时间内处理大量的投诉请求,保证系统的高效运行。

(4)可扩展性:系统应具备良好的可扩展性,以适应日益增长的用户数量和投诉量,能够方便地进行系统的升级和扩展。

(5)易用性:系统应具备良好的易用性,用户界面应简洁明了,操作流程应简单易懂,减少用户的学习成本。

(6)兼容性:系统应具备良好的兼容性,能够与不同的操作系统、浏览器和设备进行良好的兼容,以满足用户的多样化需求。

(7)可维护性:系统应具备良好的可维护性,代码结构清晰、易于理解和修改,方便开发人员进行系统的维护和更新。

(8)可靠性:系统应具备良好的可靠性,即能够保证数据的完整性和准确性,避免出现数据丢失或错误的情况。

2.3  系统流程分析

业务流程是一种用符号和线条表示用户在使用系统时的过程的可视化工具。通过绘制业务流程图,开发人员可以更好地理解业务流程,识别潜在的问题,并对系统进行改进和完善。

2.3.1数据增加流程

该流程图展示了用户在增加数据时的操作流程。用户首先登录系统,成功后进入增加数据页面。用户填写除编号以外的增加信息,并提交给系统。系统接收到用户提交的数据后,首先生成特定的编号。然后,系统对用户填写的其他增加信息进行验证。如果验证合法通过,则将完整的数据添加到系统中,并向用户显示增加数据成功的提示。如果验证不通过,则系统不会进行数据添加,并向用户显示增加数据失败的提示,图2-1显示的就是在增加数据时的流程。

图2-1 数据增加流程图

2.3.2 数据修改流程

数据修改时的流程和上面介绍的数据增加时的流程差不多,如图2-2所示。

图2-5  数据修改流程图

2.3.3 数据删除流程

如果系统里面存在一些没有用的数据的话相关的管理人员还可以对这些数据进行删除,图2-5就是数据删除时的流程图。

图2-6 数据删除流程图

2.4本章小结

本章主要通过对问题投诉办理系统的可行性分析、功能需求分析、系统用例分析和系统流程分析,确定了系统要实现的功能,并为代码实现和测试提供了标准。可行性分析评估了系统的技术、经济和操作可行性;功能需求分析明确了系统的功能模块和需求;系统用例分析描述了用户角色的使用场景和交互过程;系统流程分析详细说明了各个功能模块的操作流程和数据流动。这些分析结果将指导系统的开发与测试,确保满足用户需求并提供可靠易维护的系统。

3 问题投诉办理系统总体设计

在功能模块设计方面,本章详细讨论了问题投诉办理系统所需的功能模块,并对每个模块进行了设计。这些功能模块包括普通用户模块、员工用户模块和管理员模块等,每个模块都有特定的功能和操作流程。本章主要讨论的内容包括问题投诉办理系统的功能模块设计、数据库系统设计。

3.1 系统功能模块设计

在上一章节中主要对系统的功能性需求和非功能性需求进行分析,并且根据需求分析了本问题投诉办理系统中的用例。那么接下来就要开始对本问题投诉办理系统的架构、主要功能和数据库开始进行设计。问题投诉办理系统根据前面章节的需求分析得出,其总体设计模块图如图3-1所示。

图3-1 问题投诉办理系统功能模块图

3.2 数据库设计

数据库设计一般包括需求分析、概念模型设计、数据库表建立三大过程,其中需求分析前面章节已经阐述,概念模型设计有概念模型和逻辑结构设计两部分。

3.2.1 数据库概念结构设计

下面是整个问题投诉办理系统中主要的数据库表总E-R实体关系图。

图3-2 问题投诉办理系统总E-R关系图

3.2.2 数据库逻辑结构设计

通过上一小节中问题投诉办理系统中总E-R关系图上得出一共需要创建很多个数据表。在此我主要罗列几个主要的数据库表结构设计。

表communication_information (沟通信息)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

communication_information_id

int

10

0

N

Y

沟通信息ID

2

employee_account

int

10

0

Y

N

0

员工账号

3

employee_name

varchar

64

0

Y

N

员工姓名

4

employee_phone_number

varchar

64

0

Y

N

员工电话

5

user_account

int

10

0

Y

N

0

用户账号

6

user_name

varchar

64

0

Y

N

用户姓名

7

user_phone_number

varchar

64

0

Y

N

用户电话

8

complaint_time

date

10

0

Y

N

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值