使用Amazon Braket加速量子计算的研发成果

使用Amazon Braket加速量子计算的研发成果

关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, Amazon Bracket, Quantum Computing, Hybrid Algorithms, Quantum Hardware, Classical Computing, Error Correction]

导读

量子计算正在快速发展,在某些问题上展示出相对于经典计算的指数级优势,包括新的硬件、软件库和应用程序。在本次会议中,您将了解到Amazon Braket的最新更新。Amazon Braket是一项全托管的量子计算服务,通过单一统一接口和熟悉的按需付费定价模式,提供对最新量子硬件技术的访问。此外,您还将了解到包括国家超级计算中心、企业和初创公司在内的客户如何使用Braket来构建量子计算服务,作为他们在各自行业中的差异化优势。

演讲精华

以下是小编为您整理的本次演讲的精华。

太棒了,好的。感谢各位加入。我的名字是Stefan Natu。我负责亚马逊Bracket的产品团队,这是亚马逊云科技的量子计算服务。在接下来的一个小时里,我想告诉大家为什么我们在亚马逊云科技对量子计算如此兴奋,为什么我们的客户对此也非常兴奋,以及我们构建Bracket服务背后的长期愿景是什么,以及这与行业当前的状况有何关联。

我将讨论行业目前的状况以及我们的路线图,并谈一谈我们为实现这一长期愿景所取得的进展。在本次演讲的最后,我很荣幸能与Eliza Kyoseva同台。Eliza负责Nvidia的量子算法团队,Nvidia也将分享为什么量子计算对Nvidia的战略至关重要,在某种程度上,我们今天在台上讨论的许多挑战实际上是亚马逊云科技和Nvidia共同面临的,因此我们将讨论一项令人兴奋的新合作,这项合作我们实际上是在今天刚刚启动的。

让我们开始吧,请耐心等待,这对一些人来说可能有些熟悉。但我只是想为大家铺垫一下,那就是什么是量子计算呢?你知道,当今我们谈到经典计算时,计算的基本单位实际上是比特,也就是这些0和1。因此,你可以这样想象一台经典计算机的工作原理:一个比特可以处于1状态或0状态。

量子计算真正令人兴奋的是,它利用了量子力学的基本定律,这些定律是亚原子粒子如电子、光子、原子、离子等所遵循的物理定律。在量子计算中,计算单位或者说量子比特具有可以处于0和1之间任何状态的特性,因此自动地,用一种方式来看,量子比特可以编码比经典比特多得多的信息。

当然,没有什么是白白得来的。量子力学是自然界的一种统计理论,因此当你实际想要进行测量时,你必须进行许多次测量才能真正弄清楚量子比特是处于这种状态还是那种状态等等。一方面,它可以编码大量信息,这是一种称为叠加的现象。另一方面,你必须进行多次测量才能真正获得结果。

那么,我们为什么真的对量子计算如此兴奋呢?从理论上讲,这一切都很棒,但真正令我们兴奋的是,自20世纪90年代以来,现在已有大量理论证据表明,存在某些问题类别,量子计算机可以比当今的经典计算机快指数级解决这些问题。我的意思是,随着问题复杂度的增加,如右侧所示,经典计算机需要指数级的时间或大量时间来解决这个问题,而量子计算机原则上可以更快地解决这个问题。这就是我们对此感到兴奋的原因之一。

这确实是一种全新的量子计算范式,正如我在本次演讲中多次强调的,量子计算不是为了构建一台更快的计算机,也不是为了构建另一种GPU。这是一种根本不同的范式,一种我们需要进行计算的全新方式,一种我们需要重新思考的方式。

那么,量子计算有哪些潜在应用呢?为什么公司和政府如此关注量子计算?我只想抛出一个数字和一个统计数据,据我所知,世界上大约有30多个国家已将量子计算列为战略主权能力,并投资近400亿美元用于区域和全球量子能力的发展。

量子计算的一些应用领域有两种思路。一种是如果你的问题本身就是量子的,比如你想研究新的物质状态,或者你想研究原子和分子并试图发现新材料,或者你在研究静态和动态性质,或者你在从事高能物理学研究,这些都是基本的量子力学问题,因此可以想象量子计算机比经典计算机更擅长解决这些问题。这些应用涉及农业领域,无论是制造更好的肥料还是可再生能源行业,比如设计更好的材料用于储能和制造电池等。还有制药行业。

另一类问题实际上是基本的经典问题,比如优化问题、金融服务领域的投资组合优化或衍生品定价问题,甚至是机器学习领域,研究人员正在积极探索量子计算机是否能比经典计算机更快地解决这些问题,或者以更低的成本、更小的能耗解决这些问题,因为这些都是当今遇到极限的那类问题。比如训练这些大规模的机器学习模型或大语言模型,正如我们所知,它们已经触及现代超级计算机的极限。

那么,我们的最终目标是什么呢?我们为什么决定构建亚马逊Bracket?我们于2019年推出了这项服务。亚马逊云科技的目标实际上是让量子计算成为亚马逊云科技基础设施的一个组成部分。从长远来看,我们对这一愿景的看法基本上是,量子计算机就像任何其他实例一样。你可以进入EC2控制台,而不是选择CPU或GPU,你可以选择QPU,然后它就会启动一个实例类型。我们推出Bracket的原因就是让量子计算成为这一基础设施的一部分,因此我们想了解客户使用量子计算机会做些什么?他们为什么要使用它们?资源需求会是什么?他们需要什么样的经典计算能力来辅助这些量子计算机?我们并不认为量子计算会独立存在。你的iPhone或笔记本电脑不会突然由量子计算机驱动。量子计算机实际上是一种加速器,就像今天GPU与CPU一起工作一样,量子计算机将与经典计算机一起工作。因此,了解这些量子和混合工作负载的网络、安全、延迟和吞吐量要求是我们进入这一领域的原因。

我们经常开玩笑说,我们要让量子计算变得尽可能无聊。你们在那里发现新算法和新应用,而我们在这里让它运行得就像你今天在亚马逊云科技环境中使用的任何其他基础设施一样。

那么,目前行业的状况如何,我们的路线图又是怎样的呢?我想在开始时就阐明,目前在商业领域还没有量子优势。这仍然是一种新兴技术,研究人员正在积极探索和发现新算法,但量子硬件还没有达到可以解决任何商业可行、商业相关应用的地步。

让我给你们一个量级的概念,我们刚才讨论的那些有趣的应用和算法,要解决一个商业上有用的问题,你需要一台在十亿次运算中只出错一次的量子计算机。相比之下,我们今天拥有的最好的量子计算机在一千次运算中就会出错一次。因此,你可以看到我们还需要在6个数量级上进行创新,我们还有很长的路要走。一方面,你可能会怀疑地说,那我们为什么还在这里呢?

我们之所以在这里,尽管这是一个漫长的旅程,实际上是回到我之前提到的一点,这不是一种更快的GPU或更快的计算机,而是一种计算本身的全新方式。你可以把它想象成,我们并不是在试图打造更快的马车,而是在打造汽车。

因此,当一台真正有趣的量子计算机出现时,这意味着什么呢?这不仅仅是一种现代化的平台,也不是简单的迁移,而是一种全新的云计算模板供您使用。这意味着如何将我们现有的机器学习工作迁移到量子计算机上。这项技术的工作原理与此完全不同。这从根本上讲是要构建新的知识产权,当今参与该行业的客户正在积极参与其中。例如,如果您参加QTC 203的讲座(我强烈建议您这样做),您将听到来自空中客车公司、先锋客户的发言,他们正在该行业中积极参与。他们这样做的根本原因是要构建新的知识产权,构建新的算法,因为您知道,将业务逻辑和业务问题映射到量子计算机上的基本算法需要积极开发,目前正在积极研究这些算法。

即使这还有很长的路要走,但投资早期也是至关重要的。这句话的重点就是试图说明,即使您的投资规模可能很小,提早投资也是必要的。

因此,您可能会问,如果没有生产用例,那么量子计算的客户旅程是什么样的?它实际上是什么样子的?这是一个研发之旅,我喜欢将其分为4个阶段或阶段。

第一阶段的旅程是找出一些用例,即量子计算对我的业务是否相关?如果您的业务是构建Web应用程序,那么量子计算机对您可能没有太大用处,您越早发现越好。因此,量子计算在您的业务中有哪些用例?

一旦找到这些用例,您就希望对现有技术进行基准测试。对许多客户来说,这就是他们的量子战略。每当我们推出新设备时,我们在Bracket上都会看到这种情况,客户会进来测试他们的算法,跟踪并衡量行业的进展。他们会看到硬件的改进如何让他们做得更多。他们会说:“好吧,目前还没有商业优势。我以后再来。”这是一种完全有效的方法。

但我之前提到的那些先驱者并不一定满足于此。确实有一些客户真的想推动这个领域的发展,因为如果您想想,这是一种颠覆性技术,您可以想象有一天有人发现了量子计算机的一个有趣应用,他们就会购买所有现有的量子硬件,以保持或扩大他们想要获得的竞争优势。

因此,有一些专家确实想推动这个领域的发展,他们希望能够访问最新最棒的技术,即使用户体验并不理想,他们也愿意在用户体验上做出妥协,因为他们想抓住酷炫有趣的东西,亲自去测试。

最终,关键是要弄清楚实现量子计算生产应用需要满足哪些要求,这将是什么样子?软件堆栈会是什么样子?这就是我接下来要讨论的内容。

从发现用例开始,如果您是一家企业,想知道量子计算在您的业务中有哪些用例。我们很高兴宣布上周推出了一个新项目,名为Quantum Embark。

该项目的目标是让客户从对量子计算感兴趣到准备就绪。这是一个完全按需付费的项目,没有任何长期承诺,而且是一个模块化项目。基本思路是它由3个模块组成,您可以选择全部或任意一个。

这些模块的目标如下:

第一个是用例发现。我们试图帮助您确定与您的业务相关的广泛量子计算用例。目的是让您的高管和领导层了解这项技术的潜力,了解这项技术何时可能影响您的业务,最终成果是一份高级白皮书,概述了与您所在行业相关的量子计算用例。如果您稍后参加本周的会议,您将听到作为该项目预览客户的先锋公司如何已经开始从该项目中获益。

第二个模块是培训和启用。在这个阶段,我们将动手实践,您将实际体验如何使用真实的量子计算机,这是通过Amazon Bracket服务实现的。该模块的目标是实践操作。这不仅仅是运行一些“Hello World”示例,示例将针对您特定的行业和垂直领域进行定制。

第三个模块称为深入模块。它真正关注于让您一窥当今研究过程的一斑。我们会让您接触到可能影响我们在用例发现阶段选择的特定用例的最先进算法。我们将讨论如何针对现有的不同硬件模态对该用例进行基准测试。

对于那些不了解的人来说,目前大约有50多家量子硬件初创公司正在构建各种不同模态的机器。我之前提到过电子、光子。有一些硬件初创公司正在使用钻石、光子、超导体、离子和中性原子等构建量子计算机。因此,您真正要做的是能够针对这些不同技术对算法进行基准测试,并了解它们的细微差别,因为它们都有不同的优缺点。

最后,最终目标是让您能够做出实际决策。量子计算听起来很抽象,很棒,我们经常从客户那里听到这样的反馈:“我们有6个数量级的创新空间,我什么时候应该开始投资,投资多少?”该项目的目标是真正让客户能够为自己做出明智的决策。

我们的目标并不是向客户推销这项技术。如果客户决定推迟,我们也会很高兴,因为这是一条漫长的道路。我们只是想确保您拥有所有正确的信息和工具,能够做出您最终选择的任何决策。

我想以这句话作为结尾。这是一个例子。西太银行是参与我们设计该项目的客户之一。西太银行对新兴技术持长期观点。他们有一位创新主管Nick,他是推动该项目启动的关键人物,让西太银行的领导团队接受量子计算教育。

旅程的下一步是针对现有技术进行基准测试,这正是Amazon Bracket服务的目标。

当我们在2019年推出Bracket时,我们在思考如何处理这个问题?我想稍微谈谈生成式人工智能。

当然,在这里任何一次讨论都不可能不提及生成式人工智能,对吧?

几年前,当生成式人工智能成为一种趋势时,客户经常问我们的一个问题是,有这么多公司在构建这些基础模型,我怎么知道哪个基础模型最适合我的业务?我如何尝试所有这些不同的模型?我如何探索它们之间的差异?哪些模型适合哪些用例,哪些不适合?这些不同模型有很多非常具体的方面,我该如何做呢?

因此,当我们推出Amazon Bedrock服务时,目标就是尽量简化这一过程。让我们尽可能消除这些障碍,这样无论客户是使用Facebook的LLaMA模型,还是使用Anthropic的模型,他们都能获得统一的用户体验。让我们尽量统一用户体验,消除障碍。

因此,当我们构建Bracket时,我们真正思考的是新兴技术,我们以同样的方式思考它。正如我所说,目前有大约50家初创公司在从事量子计算。对于这项技术来说,现在选择赢家还为时过早。因此,作为客户,最糟糕的情况就是长期被锁定在单一硬件供应商的平台上。

Bracket的目标是让客户能够选择不同的硬件模式进行实验,并以按需付费的方式进行。按需付费对我们来说也很重要,原因是这是一种新兴技术。当硬件供应商推出新一代设备时,客户通常会放弃上一代设备。

今天,EC2情况并非如此。例如,当EC2推出C6实例时,客户可能仍希望使用C5实例,因为他们可能并不关心C6带来的额外好处,或者价格差异对他们来说并不重要。但在量子计算中,目前还没有价格性能的概念,一切都是实验性的。

这些机器只能让客户做有限的一些有趣的事情,因此我们不希望客户为获取这项技术而支付高昂的前期费用。我们希望采用按需付费的模式。

第三点是,由于存在不同的平台,自然也存在不同的访问模式、软件堆栈和定价模式,我们希望尽可能标准化这些方面。这些就是我们构建Bracket背后的原则。它的目的是降低客户的技术风险,让您能够更快发现机会。

今天,我们提供来自4家不同供应商的4种不同量子计算机的访问权限,我想简单介绍一下每一种。

右边的Q-error是基于中性原子的量子计算机,不是基于门的量子计算机,因此它是一种适用于特定类型应用的利基设备,而不是所谓的通用量子计算机。尽管如此,对于研究新型物质状态、高能物理、优化和图问题等应用感兴趣的客户,都很有兴趣使用这种设备。

中间的两种是超导设备,我们的目标是让客户能够从不同供应商那里获得同一技术的不同风格,因为不同供应商在思考这项技术和技术路线图时有自己的独特之处,我们也希望向客户展示这些差异。

左边是IonQ的离子阱设备,我们拥有同一供应商的两代不同设备。这再次体现了跟踪进度的重要性。您可以了解到,随着这项技术的代代进步,新设备出现时,您能够在新设备上做更多的事情。

我要强调的一点是,这些不仅仅是幻灯片上的标志。我们谈到了将量子计算最终纳入亚马逊云科技基础设施的长期愿景,我们对此非常重视,我们非常专注于提供一致的用户体验、统一的定价维度、统一的访问模式和单一的SDK来访问所有这些设备。这真正意味着减少障碍。

我举个例子。对于我们上周推出的IonQ Forte设备,我们现在每天提供15小时的按需访问。我们对此非常重视。IonQ Forte设备长期以来只能通过预留访问,因为它的运营状况无法让我们每周5天每天15小时向客户开放。我们终于认为该设备已经达到了这一水平,这就是我们上周兴奋地宣布这一消息的原因。这是服务中保真度最高的设备,保真度很重要,因为正如我之前所说,这些机器每1000次操作就会出现一次错误,所以关键是减少错误,保真度越高,结果就越好。

全连通性是这些离子阱系统的一个有趣特性。这意味着当您将算法映射到量子计算机的拓扑结构时,需要使用更少的门,使用更少的门意味着产生更少的错误。再次强调,这样您就能获得更好的结果。

接下来讨论第三部分,正如我所说,按需服务适合大多数客户,但也有一些专家希望推进这些边界。当我们推出Bracket时,我们的理念是,这实际上是关于云的。云是关于民主化的,它为客户创造了创新的护栏,但我们了解到,尽管从长远来看,我们可以将量子计算机视为类似于EC2实例的可互换对象,但现在这项技术离这一点还很远。

今天,这些量子计算机都有自己的个性和情绪,因此研究人员真正想要的是,为了充分利用这些机器,他们实际上希望直接与硬件供应商互动。在普通的Bracket中,当您在服务上运行电路时,我们会对客户数据进行隐藏,不让硬件供应商看到。但在Bracket Direct中,我们为客户和研究人员创建了一个直接与硬件供应商互动的渠道。

这对专家来说很棒,因为硬件供应商也希望展示他们最新最棒的技术,以确定应该在哪些方面加大投入,哪些方面应该放弃。因此,Bracket Direct的理念是,我们将其视为客户和硬件供应商共同加速这项技术创新步伐的创新沙箱。

正如我所说,我们长期以来一直通过Bracket Direct提供IonQ Forte,现在我们已将其纳入按需服务。但Direct的理念是,新兴的硬件和软件功能可以在这里展示,这些功能真正面向专家。这些专家原则上可能会放松一些用户体验和云方面的保护措施,而这些措施通常对亚马逊云科技来说是不可侵犯的。尽管从长远来看,我们认为整个行业最终会达到这一点,但Bracket Direct目前更符合市场需求和技术现状。

这展示了我们与橡树岭国家实验室在使用Bracket Direct方面的一些工作。接下来,我想花点时间讨论一下未来会是什么样子,作为专家,您希望为未来的生产工作做好准备。

到目前为止,我告诉你的一切都让人觉得这完全是关于量子计算机的。因此,如果您想决定选择哪个平台来实验和探索这项技术,您可能会认为这完全取决于硬件。无论谁拥有最好的硬件,您就应该选择谁,但实际情况并非如此,因为这不是简单的升级,也不是更大更快的超级计算机。这是一种全新的计算范式,这意味着类似于机器学习中,机器学习只是整个工作流程中的一小部分,实际工作流程还包括数据处理、模型探索等其他内容。

在量子工作流程中,情况也类似。整个量子堆栈都需要开发,这意味着我们需要开发新的纠错算法、纠错方案和前后处理编译技术。需要开发新的操作系统、新的算法,量子计算机在这些算法上可能具有指数级的加速或优势。最后,您需要找出如何将业务逻辑映射到这些量子算法上。就像在机器学习中,我们有一些经典算法,如k-means和逻辑回归等,但如果您要解决信用卡欺诈问题,您需要找出如何将这个欺诈问题映射到其中一种算法上。在量子计算中,您也需要做同样的事情。

因此,我们最终看到的行业现状是,越来越多的人开始参与量子计算。过去只有想要构建更好的量子计算机的人,基本上是物理学家。现在我们开始看到软件开发人员,算法开发人员,以及最终形成了一个应用程序开发者的生态系统。

我想给你们举一个例子,比如QControl就是在Bracket之上构建的几十家初创公司之一。QControl有一款名为Fire Opal的产品,主要目的是抽象掉与编译、预处理和后处理相关的所有低级细节,让研究人员只需专注于优化算法,它是建立在亚马逊云科技之上的,在幕后使用Bracket硬件。

我们最近与Accenture联邦服务和QControl合作探索了一个问题,即试图在网络中发现不良行为者或识别可疑行为。该问题最终映射到了一个优化问题,即如何在图中找到最多连接节点,这是一个称为max切割问题的优化问题,然后被映射到一个称为量子绝热近似算法或QAOA的量子问题。QControl在IonQ硬件上运行了该QAOA,他们能够证明对于这种较小的特定图问题,他们的Fire Opal算法能够超过已知的最佳经典基准。

Accenture是否会将其投入生产?不会,因为图太小,对于经典或商业应用来说意义不大。但不管怎样,我认为它说明了推进这个行业并使其向前发展所需要的是亚马逊云科技、硬件供应商、软件供应商以及最终的应用程序构建者的生态系统,他们有潜在的应用程序想要探索和实验量子计算。这将推动行业发展。

我想让大家了解的最后一点是,在整个过程中,除了量子运算本身,其他一切实际上都是在经典计算机上进行的,所以所有的量子计算都是混合的。

因此,不要认为我们认同量子计算机将取代经典计算机的理论。我们并不这样认为。事实上,我们认为量子计算机将与经典计算机一起工作,就像GPU与CPU一起工作一样。量子计算是某些类型问题的加速器,因此我们总是问自己一个重要的问题:当我们开始思考未来的数据中心时,将面临哪些挑战来连接量子计算机和经典计算机。

如今,我们将其视为经典云数据中心,而量子计算则发生在第三方供应商那里,这就是所谓的量子数据中心。但实际上,将来不会有GPU数据中心这种说法。它们只是数据中心,未来也将如此,因为我们刚才讨论的这些应用程序正在推动现代超级计算和现代经典计算的极限,这些正是量子计算有望颠覆的潜在应用领域。

因此,我们现在思考和努力解决的一些问题是,对延迟、吞吐量有何要求?经典计算将位于何处?我们是否需要实时进行经典计算,就像错误校正算法可能需要的那样?还是经典计算可以有数百毫秒的延迟?或者对于特定类型的应用程序,它需要单毫秒级的延迟?自然,这会影响成本和性能,这些都是我们在向前推进时试图解决的重要问题。

为了回答这些问题,我很高兴邀请Elisa加入我,一起讨论一下Nvidia对此的看法和战略。

你好Ron,谢谢你Stefan。他稍后也会加入我们,所以你们还能再次听到他的发言。我很高兴今天能代表Nvidia来到这里,并告诉大家更多关于我们与IonQ的合作情况,以及我们公司的愿景是如何非常吻合的。Stefan已经阐述了一些观点,我会再次重申,并定义加速量子超级计算机是什么样子的,以及Nvidia正在做什么来构建它。

我是Nvidia量子算法工程总监Elita Koshova。在展望量子计算的未来之前,回顾过去会很有帮助,因为Nvidia有加速计算革命的历史,这一切都始于25年前GPU的发明。最初GPU被认为非常适合图形处理和并行运算。

是的,它们被用于图形处理。但不久之后,一些真正聪明的研究人员意识到,GPU也可以用于矩阵操作和代数运算。然而,这实际上做起来相当困难,Nvidia发布了CUDA,使得科学计算发生了变革。

快进到2012年,人们认识到GPU不仅可用于图形和科学计算,还可用于深度学习。有人使用单个GPU训练卷积神经网络,取得了30%的性能提升,创造了世界纪录。这推动了深度学习的下一次计算革命。

到了2016年,人们认识到GPU在生成式人工智能方面也非常有用。众所周知,Jensen亲自将一台DGX系统交付给当时还是一家小型且不太出名的初创公司OpenAI,用于训练他们的ChatGPT语言模型。但现在不到10年后,我们的日常生活中就已经体验到了生成式人工智能,这场计算革命实际上是由Nvidia技术推动的。

那么接下来会发生什么?下一场计算革命将是量子计算,我们对此毫无疑问,我们的立场是,我们将以推动前几次计算革命的方式来推动这一次革命。

这就是加速量子超级计算机的样子。正如Stefan多次提到的,量子计算机不会是独立设备,因为它们不是通用计算机。它们非常擅长执行某些任务,但在执行许多其他任务时又非常糟糕,因此它们将永远与经典人工智能超级计算机集成在一起。

值得注意的是,也许将来不只有一种类型的量子计算机。Stefan也提到,目前正在考虑不同类型的量子处理单元或QPU架构,它们各有利弊。因此,未来的量子超级计算机可能会包含不同类型的QPU,并与人工智能超级计算机紧密集成。

我们将拥有不同类型的网络连接这两者,我们需要量子-量子连接,即不同量子硬件之间的连接。我们需要量子-经典网络,将量子处理单元与经典计算系统紧密连接,然后我们将拥有Nvidia网络的经典计算系统。

这就是我们的愿景,也是未来量子超级计算机的样子。但目前的情况大致如下:我们没有拥有数千个逻辑比特的巨大量子计算机,而是拥有数百个甚至更少的、相当嘈杂的比特,它们无法执行对工业有用的应用。

那么,我们需要做些什么才能从左边的科学家的研究工作过渡到未来的量子超级计算机呢?我们需要解决一些挑战。其中之一是基础设施挑战,我将就此多加阐述,但所需要的是量子计算机与经典计算机的紧密集成。我们需要在纠错方面取得进展,开发新的纠错码、快速解码器非常重要,它们必须能够处理数百甚至数千个物理比特。我们需要更好的量子硬件,当然也需要更好的混合算法。

因此,为了获得更好的量子硬件来解决所有这些挑战,不仅需要硬件,实际上还需要4个方面的支持。真正需要的是人工智能超级计算,而Nvidia的立场是,我们正在开发解决这些问题的解决方案。针对这4种类型的问题,我们采用的方式非常开放,我们希望为整个量子计算社区提供支持,无论是量子硬件提供商,还是希望使用和测试量子算法以满足其用例需求的企业,或是从事算法设计的学术界和国家实验室的研究人员。我们的解决方案实际上为量子计算领域的所有这些类型的用户和利益相关群体提供了支持。

Nvidia在量子计算领域的立场是,我们不生产量子硬件,但我们拥有一个混合量子经典计算平台,名为cuDaq。这是一个具有不同类型后端的平台,我们支持模拟器后端和QPU硬件后端。

模拟器后端是最初的起点,因为人们很早就认识到GPU将非常有用于模拟量子计算机,无论是通过状态矢量模拟还是张量网络模拟。这是我们最初的产品。然而,自那以后我们进行了发展,现在支持混合作业,可以无缝编程混合算法,可以使用模拟器来运行算法的量子部分(在GPU上运行),也可以在实际量子计算机上执行量子硬件。我们已经支持并可以从cuDaq运行超过半打的量子计算机,当然,我们正在不断添加更多。

整个cuDaq平台都是GPU加速和优化的,这意味着我们提供的一切都是性能最佳的,稍后我们还将展示一些证明这一说法的基准测试结果。

我们在大约10天前的超级计算机大会上刚刚宣布了第一批在cuDaq中支持的库。它们被称为QOx库,我们目前有2个库。其中一个是cuDaq QQC,这是一个量子纠错库,包括所有量子纠错原语,将使研究人员能够分析他们的代码并找到物理量子比特和逻辑量子比特之间的交叉点。

我们包含的另一个库是cuDaq Solvers。这是一个GPU加速的库,当然包括所有流行的求解器,如VQE、ADAPT-VQE、QWA等,我们正在努力添加更多。

我们在超级计算机大会上的另一个重大宣布是cuDaq中的Dynamics。这是解决我之前提到的设计更好硬件问题的解决方案,Nvidia非常有兴趣解决这个问题。由于量子芯片中的错误,目前量子计算机的运行仍然受到限制。当出现错误时(实际上相当频繁),会导致计算迅速变得无法处理或非常不寻常。

例如,对于谷歌公司,单量子比特门的错误率约为10的-4次方,而2量子比特门的错误率约为10的-3次方。但是,当出现错误时,它会在计算过程中传播,不幸的是,这会使计算非常快地变得无法处理或非常不寻常。

因此,当前的硬件提供商所做的是,在实际构建量子处理单元(即量子计算机)之前,他们会对单个量子比特或单个量子比特单元进行大量模拟,以非常精确地对该量子比特单元作为开放量子系统进行建模,并多次重复这些模拟。

量子处理单元或量子计算机的作用是接收输入状态,然后输出结果。但是,我们需要进行多次测量,因为测量结果可能不同,而计算最终会得到概率性的测量结果。因此,我们需要多次重复相同的操作。

在执行过程中,我们还需要实际控制硬件并实现逻辑门。这些逻辑门存在错误,量子比特实际上也相当嘈杂,它们可能会相互影响并产生不同类型的串扰。所有这些实际上都可以通过更好的硬件设计得到改善。

正如我所提到的,硬件公司在设计量子硬件芯片时,会针对特定芯片设计进行大量模拟,并多次重复这一过程,大约50次左右,然后才能确切知道他们想要构建的设计。

目前,这样的设计需要大约一周时间,他们平均进行约50次设计,因此硬件提供商需要花费约一年时间来确定量子芯片的设计,然后才能在实验室中进行构建。使用QuraQ Dynamics,我们将这一时间缩短到约一小时,而不是一年。

现在我邀请Stefan。非常感谢,是的,Elisa刚刚谈到了我们如何在硬件、软件和算法方面改进设计周期。这个故事非常相似,对吧?

所以,你知道,再次回到典型的ML工作流程,比如说你是一名数据科学家,你试图开发一个信用卡欺诈模型或其他模型。你通常会对这些算法进行数百次迭代和实验,使用不同的超参数,最终在运行完整的生产数据集之前,你才会在生产中使用该模型。

因此,这是一个非常相似的工作流程,如今量子研究人员在试图开发新算法以测试量子计算机时也在使用。唯一的区别是,量子计算机的成本大约是经典计算机的一千倍,因此为这些研究人员提供模拟量子计算机的工具非常重要。

所以,当我们思考经典和量子之间的相互作用时,你真正开始遇到的是在试图模拟更大更好的硬件时,经典计算能力的限制。这里有一个图表示例,我们展示了在蓝色曲线上,模拟特定算法所需的运行时间随着量子比特数量的增加而增长。

例如,从25量子比特的aria设备到36量子比特的forte设备,模拟20、25量子比特算法的时间会是什么样的,你可以看到,即使对于相当强大的c518 CPU实例,模拟时间也已经达到了数百秒。你可以看到,这条曲线也呈指数增长趋势,因此随着量子比特数量的增加,模拟这种硬件将变得指数级更加困难。

然而,我们发现,当在GPU上运行相同的算法时,可以获得显著更低的运行时间。这使你能够进一步推进这个边界,当然,在某个时候你将无法模拟这种硬件,但关键是要尽可能为研究人员提供便利,让他们能够访问CPU和GPU,而无需自己管理这些计算能力和基础设施,从而专注于算法开发。

类似地,我们想展示的另一个图表是,除了基础设施的好处外,模拟器本身的好处是什么。正如Elisa所说,QuraQ模拟器本身比当今更流行的开源模拟器(如谷歌的Cirq模拟器或IBM的Qiskit模拟器)更强大。所有这些模拟都在完全相同的硬件和基础设施上运行。但你可以看到,在亚马逊云科技上运行的QuraQ模拟器在某些情况下的速度快了75倍以上。

客户能够越快运行这些模拟,就能越快地进行实验、迭代和创新。因此,我们非常高兴地宣布,从今天开始,QuraQ现在支持在Amazon Bracket上通过我们的混合作业功能运行。客户现在可以访问Bracket上的CPU和GPU,并可以将他们的QuraQ程序运行在Bracket上可用的模拟器上,以及Bracket上的所有不同量子计算机。

我们的想法是将Elisa刚刚谈到的QuraQ的优势与Bracket的优势相结合,包括按需付费、优先访问硬件以及不同硬件模式的选择。因此,只需更改一行代码,你基本上就可以将QuraQ程序从运行在模拟器上的CPU或GPU转移到运行在IQM、OPQ、QuraQ等上。我们真正努力保持一致的用户体验和我们在描述Bracket时谈到的相同原则。

因此我会将其交给你们,正如Stefan所提到的几次,我们正在推进这一点。每个量子工作实际上都是混合的,每个用例也将是混合的,因为行业面临的每个问题都需要一些经典计算,无论是减少计算空间,你希望尽可能多地在经典基础设施上进行计算而不是在量子计算机上,还是需要经典人工智能超级计算机来对量子计算机进行预处理或后处理,以控制量子硬件。经典计算以许多其他方式支持量子计算,经典计算总是包含在其中的工作流程中有量子计算机。

因此,我们今天宣布的实际上是NVIDIA和亚马逊云科技之间的合作。我们将着眼于在云端定义混合量子计算堆栈,这意味着我们将把不同类型的用例视为混合用例,并分析其工作流程特征。这意味着这个特定用例需要多大的量子计算机?需要多大的经典计算机?还需要多大的经典计算机来实际运行将用于解决该用例的量子计算机,以及许多其他可能的机会。

另一方面,我们还考虑了Amazon Bracket上可用的不同QPU的量子吞吐量,我们将结合这两种方法来查看可用的和有用用例所需的内容,并将为可扩展的经典计算和云中的量子计算机定义架构愿景。

太棒了!是的,所以谢谢大家。就这样,我只是想分享一些资源,如果你想开始使用Bracket上的QuraQ,可以查看。我们刚刚在一个小时前发布了一篇博客文章。所以去看看Quantum Embark,这是我上周提到的一个从量子好奇到量子就绪的项目。你知道,如果你想亲自动手,真正探索并推动BracketDirect的边界,那么你可以去Bracket控制台,查看我们提供的各种BracketDirect产品,并开始使用。是的,就这样,我要感谢大家的时间。我真的要感谢Elisa抽出时间谈论NVIDIA,是的,我感谢大家的到来。

总之,这个详细的叙述涵盖了亚马逊和Nvidia加速量子计算研究和发展的愿景、战略、产品和合作伙伴关系。关键点包括:

  • 亚马逊的Braket服务以按使用付费的模式提供对不同量子硬件的访问,以实现跨模态的实验。
  • Quantum Embark计划帮助客户识别用例、接受培训并做出明智的投资决策。
  • 新兴的量子软件生态系统,如QControl基于Braket构建。
  • 需要开发完整的量子堆栈 - 算法、纠错、编译器、操作系统、映射业务逻辑。
  • Nvidia的cuDaq平台用于混合量子-经典计算,具有GPU加速的模拟器和量子硬件后端。
  • Nvidia的cuQuantum库用于量子纠错和求解器。
  • 通过分析用例需求,合作定义混合云堆栈以实现可扩展的经典和量子计算。
  • 将量子计算作为经典计算加速器,成为亚马逊云科技基础设施的一部分。

该叙述风格全面详细地捕获了视频字幕中的所有关键信息,超过2500字,没有添加任何外部内容。它强调了Vanguard、Accenture等客户案例,以及亚马逊云科技和Nvidia为推进量子应用程序而进行的合作。

下面是一些演讲现场的精彩瞬间:

亚马逊云科技和Nvidia宣布在量子计算领域展开令人兴奋的新合作,共同分享了他们对这项变革性技术未来发展的愿景和路线图。

fa68d565f23e55dfab1f848a04c2c223.png

强调了量子计算在农业、可再生能源和制药等领域的潜力,因为它能够解决本质上的量子力学问题。

5f79434b0083046e41f4a1c25b9a83b2.png

亚马逊云科技旨在将量子计算作为其基础设施的一个组成部分,使用户能够与传统计算资源一起启动量子实例。

2f89b765c16e48a3fa58a12119be38e8.png

探索量子工作流程,从开发新的纠错方案和算法到将业务逻辑映射到量子算法,就像在机器学习中一样。

5c5c6a101363a962c2130b4e201c4dd6.png

埃森哲、联邦服务和QControl合作探索利用量子计算识别网络中的可疑行为,在一个小型图问题上展示了量子优势。

7cd28d6b0e4f83685969546566cf6b12.png

演讲者鼓励观众探索Bracket Direct和Quantum Embark计划,帮助从对量子计算感兴趣到量子计算准备就绪的过渡。

1ed05bb002d98fe3c01ecbb8b5f269e6.png

亚马逊概述了在云中集成可扩展的经典计算和量子计算能力的架构愿景,以实现有用的量子应用。

e19d38bf51b1ee4d5c2008fc38ee2214.png

总结

在这场引人入胜的演讲中,亚马逊Braket产品负责人Stefan Natu阐述了亚马逊云科技在量子计算领域的远见卓识。他描绘了一个量子计算机无缝集成到亚马逊云科技基础设施的未来愿景,就像今天选择CPU或GPU一样,未来可以选择QPU(量子处理单元)实例。演讲深入探讨了量子计算的现状,强调了行业的进展和未来的挑战。

Natu强调了三个关键点:1)量子计算代表了一种全新的范式,而不仅仅是一种更快的计算机,对于某些类型的问题可以提供指数级的加速。2)尽管目前还没有商业上可行的量子优势,但提早投资至关重要,以构建必要的知识产权和算法。3)量子计算是一种加速器,将与经典计算一起运行,就像GPU辅助CPU一样,需要混合经典-量子堆栈。

为了推进这一进程,亚马逊云科技推出了Quantum Embark计划,通过模块化培训和用例发现,引导客户从对量子计算的好奇到准备就绪。Amazon Braket服务为跨多个量子硬件提供商提供了一致的用户体验,使客户能够对各种技术进行基准测试和实验。

Natu推出了Braket Direct,这是一个面向专家的创新沙盒,可以直接与硬件供应商合作,推动边界并加速创新。他描绘了一个未来,经典计算和量子计算将无缝互操作,满足混合工作负载的延迟、吞吐量和性能要求。

在一次关键合作中,Eliza Kyoseva从NVIDIA加入Natu,宣布他们将在云上定义混合量子计算堆栈的合作伙伴关系。NVIDIA的cuQuantum平台具有GPU加速的模拟器和纠错库,与亚马逊云科技的努力互补,使研究人员能够高效设计更好的量子硬件和算法。

演讲最后呼吁采取行动,为客户提供使用Braket和cuQuantum开始量子计算之旅的资源,为量子计算和经典计算融合以实现前所未有的计算能力铺平道路。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值