前言
足球作为全球极具影响力的运动和重要产业,其数据分析在现代足球中扮演着关键角色。在这篇博客中,我们将深入探讨一种创新的ransformer-Based Neural Marked Spatio Temporal Point Process (NMSTPP) 模型,研究该模型如何为足球比赛事件分析带来新的视角和方法。
研究背景与动机
足球比赛中,球员控球时间有限,平均每场仅3分钟,因此如何高效利用控球时间成为关键。过去,各项研究尝试理解事件序列对后续事件的影响,多数皆采用机器学习模型处理长序列事件数据,但现有方法在处理大规模时空数据(特别是时间过程)时存在不足,迫切需要更全面的时空模型和整体性能指标。在此背景下,我们提出NMSTPP模型,旨在同时且相关地对足球事件数据的时间、空间和动作类型进行建模,为足球比赛分析提供更有效的工具。
研究方法与模型架构
1.定义足球事件数据为NMSTPP
我们将足球比赛中的控球动作事件数据与标记时空点过程(MSTPP)相联系,其中标记m对应动作类型(如射门、传球等),空间z对应足球场区域,时间t对应事件间时间。通过分解多元密度函数,将MST