基于Transformer的足球比赛事件分析模型:NMSTPP预测模型的创新与应用

前言

足球作为全球极具影响力的运动和重要产业,其数据分析在现代足球中扮演着关键角色。在这篇博客中,我们将深入探讨一种创新的ransformer-Based Neural Marked Spatio Temporal Point Process (NMSTPP) 模型,研究该模型如何为足球比赛事件分析带来新的视角和方法。

研究背景与动机

足球比赛中,球员控球时间有限,平均每场仅3分钟,因此如何高效利用控球时间成为关键。过去,各项研究尝试理解事件序列对后续事件的影响,多数皆采用机器学习模型处理长序列事件数据,但现有方法在处理大规模时空数据(特别是时间过程)时存在不足,迫切需要更全面的时空模型和整体性能指标。在此背景下,我们提出NMSTPP模型,旨在同时且相关地对足球事件数据的时间、空间和动作类型进行建模,为足球比赛分析提供更有效的工具。

研究方法与模型架构

1.定义足球事件数据为NMSTPP

我们将足球比赛中的控球动作事件数据与标记时空点过程(MSTPP)相联系,其中标记m对应动作类型(如射门、传球等),空间z对应足球场区域,时间t对应事件间时间。通过分解多元密度函数,将MST

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值