一、普惠企业级AI应用,DeepSeek功不可没
自1956年达特茅斯会议“首次提出人工智能概念以来,AI技术已历经近70年的演进。从早期的逻辑推理、辅助决策,到如今的持续学习与自主执行,人工智能即将进入规模化商业落地阶段。
在此背景下,DeepSeek的横空出世为企业级AI应用注入新动能,以其跃升的推理能力、低廉的算力成本和开源的生态系统,显著加速了AI技术与业务场景的深度融合进程。这使得众多制造业客户在对其强大能力充满期待的同时,也不免对实际应用中的挑战心存顾虑,
1、缺乏Al-ready的数据
与通用大模型预训练所用的互联网数据相比,工业数据具有显著的特殊性和复杂性,比如三维设计数据。数据资产化薄弱,存在大量非结构化碎片化数据。数据质量参差不齐,格式多样整合难度大难以支持AI的训练
2、应用场景认知不足
不知道有哪些数字化场景:需求度很高但了解有限,难以找到切入点。深入理解具体的工业应用场景;缺乏成功案例参考:行业内可借鉴的数字化转型成功案例较少,导致企业信心不足。
3、对AI容错率要求严格
AI技术在工业领域的有效应用,跨领域的专业知识必不可少。涉及接口兼容性及部署等工作。
系统的精确性、安全性必须得到绝对保障,这使得工业级AI面临更高的技术与成本挑战。
二、研发数智化的路径探索,融入场景谈落地
研发数智化的正确路径,首先是要回归企业要进行数字化转型的初心一提升企业核心竞争力。其次是梳理在研发创新的流程,找出关键制约的瓶颈处所在,围绕具体场景沉淀并拆解分析数据,列举场景化的AI需求,建设研发体系、制定A1+产品战略定向赋能。
根据鼎捷在制造业的多年观察,在不同行业对于智研发的需求重点和表现特征也各有不同,以下方两大行业为例:
1、电子行业
研发可围绕IPD体系分为五大阶段,不同阶段对AI的需求不同。比如在概念阶段,AI以产品/CBB/图纸方案库为数据依托,自动生成产品设计方案及草图;在计划与开发阶段,AI可助力产品成本的预测、设计人力的安排、敏捷反馈问题、生成BOM和高效任务下发等。
2、整机装备行业
在售前阶段,AI可赋能企业高效理解用户招标文件、梳理技术需求,快速且精准的估报价;在真正接到订单后,又可以利用AI辅助设计和分解并下达任务等。
三、AI典型应用场景,助力企业数智研发转型
1、高速检索海量文档、智能问答汲取知识
鼎捷PLM接入DeepSeek的推理总结能力,生成KnoMAX知识智能问答体--可快速解析储存在PLM系统中的海量非结构化文档,以此构建结构化知识库,用户只需以自然语言与AI交互,即可快速精准地获取知识。极大地改善了研发工程师的检索效率提升了非结构化的数据的重用率。
2、文生设计:AI高效改型设计图纸
文生设计(ChatCAD)可通过AI大模型,训练理解订单需求、检索相似的原型图图纸文件和设计计算知识等,结合CAD技术共同完成改型图纸绘制。通过此能力,工程师可以直接在ChatCAD输入订单需求,快速生成改型设计图纸;亦可在导入的原型图纸上直接输入要修改的参数信息,系统即可一键改型设计。ChatCAD的诞生改变了传统设计依赖个人经验、效率低下的局面,大幅推动了企业的产品创新能力。
3、模块化设计,提升零部件重用率
鉴于产品库中“一物多码”的现象大量存在,不仅维护管理困难且易于形成呆滞库存,在新品研发时工程师也难以知晓系统中是否存在相似的设计和零件,因而易造成重新设计浪费时间,不利于标准化研发。现在,可以利用AI在产品库中检索相近的零部件,优选推荐给设计师,推进模块化设计。此举大大降低了设计成本,提高了产品设计效率和标准化水平。
总结:
除上述应用场景外,鼎捷PLM正不断突破AI应用边界,凭借前瞻性视角与专业技术实力,持续探索研发场景下的AI深度协同。
在数智经济蓬勃发展的新时代,鼎捷PLM将持续深耕行业需求,迭代技术创新,拓展功能疆域,优化用户体验。愿携手万千企业穿越数智浪潮,勇攀创新高峰,重塑产业格局。