目录
🔥个人主页:艾莉丝努力练剑
🍓专栏传送门:《C语言》
🍉学习方向:C/C++方向
⭐️人生格言:为天地立心,为生民立命,为往圣继绝学,为万世开太平
前言:前面几篇文章介绍了c语言的一些知识,包括循环、数组、函数、VS实用调试技巧、函数递归、操作符、指针、字符函数和字符串函数、C语言内存函数、结构体、联合和枚举、动态内存管理、文件操作、编译和链接、预处理等,在这篇文章中,我将开始介绍C语言内存函数的一些重要知识点!对C语言内存函数感兴趣的友友们可以在评论区一起交流学习!
一、整数在内存中的存储
还记得吗?我们在介绍操作符的时候就讲过下面的内容啦:
1、整数的二进制表示方法有三种:即原码、反码和补码;
2、有符号的整数。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,最高位的那位当做符号位,剩余的都是数值位。
正数、负数的原码、反码、补码:
1、正整数的原、反、补码都相同;
2、负整数的三种表示方法各不相同。
注:
原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码;
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码;
补码:反码+1就得到补码。
对于整型来说:数据存放内存中其实存放的是二进制的补码。
为什么哩?其实很简单:
在计算机系统中,数值一律用补码来表示和存储。
(1)原因在于,使用补码,可以将符号位和数值位统一处理;
(2)同时,加法和减法也可以统一处理(CPU上只有加法器),除此之外,补码和原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
二、大小端字节序和字节序判断
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
int main()
{
int a = 0x11223344;
return 0;
}
调试的时候,我们可以看到在a中的0x11223344这个数字是按照字节为单位,倒着存储的。这是为什么呢?
打开内存,观察一下:
我们了解了整数在内存中存储之后,来调试观察一下这个代码:
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
int main()
{
int a = 1;
//0x 00 00 00 01
int b = 0x11223344;
return 0;
}
打开内存,观察一下:
(一)大小端是什么
大端(存储)模式: 是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。小端(存储)模式: 是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。
(二)为什么会有大小端
因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit位,但是在C语言中除了8bit的char 之外,还有16bit的 short 型,32bit的 long 型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
(三)练习
1、练习(1)
这头一道题是一道百度的笔试题,要求是:请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。
代码(1)
#include <stdio.h>
int check_sys()
{
int i = 1;
return (*(char*)&i);
}
int main()
{
int ret = check_sys();
if (ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
代码(2)
int check_sys()
{
union
{
int i;
char c;
}un;
un.i = 1;
return un.c;
}
2、练习(2)
#include <stdio.h>
int main()
{
char a = -1;
signed char b = -1;
unsigned char c = -1;
printf("a = %d, b = %d, c = %d", a, b, c);
return 0;
}
3、练习(3)
#include <stdio.h>
int main()
{
char a = -128;
printf("%u\n", a);
return 0;
}
#include <stdio.h>
int main()
{
char a = 128;
printf("%u\n", a);
return 0;
}
4、练习(4)
#include <stdio.h>
#include <string.h>
int main()
{
char a[1000];
int i;
for (i = 0; i < 1000; i++)
{
a[i] = -1 - i;
}
printf("%d", strlen(a));
return 0;
}
5、练习(5)
#include <stdio.h>
unsigned char i = 0;
int main()
{
for (i = 0; i <= 255; i++)
{
printf("hello world\n");
}
return 0;
}
#include <stdio.h>
int main()
{
unsigned int i;
for (i = 9; i >= 0; i--)
{
printf("%u\n", i);
}
return 0;
}
6、练习(6)
#include <stdio.h>
//X86环境小端字节序
int main()
{
int a[4] = { 1, 2, 3, 4 };
int* ptr1 = (int*)(&a + 1);
int* ptr2 = (int*)((int)a + 1);
printf("%x, %x", ptr1[-1], *ptr2);
//%x是以十六进制的形式打印数据
return 0;
}
结果输出如下:
画图:
三、浮点数在内存中的存储
常见的浮点数:3.14159、1E10(没错,1E10也是浮点型,1E10即1.0*10^10)等,浮点数家族包括: float 、 double 、 long double 类型。
(一)小练习
#include <stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
输出结果:
(二)浮点数的存储
上面的代码中, n 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这 么大?要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式: V = (−1) S ∗ M ∗ 2^E
(−1) S 表示符号位,当S=0,V为正数;当S=1,V为负数;M 表示有效数字,M是大于等于1,小于2的;2^ E 表示指数位。
(1)对于32位的浮点数(float),最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M;(2)对于64位的浮点数(double),最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M。
float类型浮点数内存分配
double类型浮点数内存分配
1、浮点数存的过程
IEEE 754对有效数字M和指数E,还有一些特别规定。
1 ≤ M < 2 ,也就是说,M可以写成1.xxxxxx的形式,其中 xxxxxx 表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
指数E的情况就比较复杂了:
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。
打个比方,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
这样的浮点数存储方式很巧妙,但是我们也要注意到有的浮点数是无法精确保存的。比如:1.2,我们可以在VS上调试看一下,会发现有些许误差。
2、浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
(1)E不全为0或不全为1(常规情况)
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:0.5的而进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1) ,其阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000,则其二进制表示形式为:
0 01111110 00000000000000000000000
(2)E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
0 00000000 00100000000000000000000
(3) E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
0 11111111 00010000000000000000000
关于浮点数的表示规则,我们就介绍到这里啦!
(三)题目详解
让我们回到一开始的练习:
#include <stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
1、第一环节
我们先看第一环节,为什么9还原成浮点数,就成了0.000000呢?
9以整型的形式存储在内存中,得到如下二进制序列:
0000 0000 0000 0000 0000 0000 0000 1001
首先,将9的二进制序列按照浮点数的形式拆分,得到第一位符号位s=0,后面8位的指数 E=00000000,
最后23位的有效数字M=000 0000 0000 0000 0000 1001。
由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:V=−1^0×0.00000000000000000001001×2*(-126)=1.001 ^(−146)。
显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。
2、第二环节
再看第二环节,浮点数9.0,为什么整数打印是1091567616。
首先,浮点数9.0等于二进制的1001.0,即换算成科学计数法是:1.001×2^3;
因此:9.0 = (-1) ^ 0 * (1.001) * 2 ^ 3;
那么,第一位的符号位S=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130, 即10000010,所以,写成二进制形式,应该是S+E+M,即
0 10000010 001 0000 0000 0000 0000 0000
这个32位的二进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码就是 1091567616 。
结尾
往期回顾:
字符函数和字符串函数(二):strncpy、strncat、strncmp函数的使用、strstr的使用和模拟实现、strtok函数的使用、strerror函数的使用
字符函数和字符串函数(一):字符分类函数、字符转换函数、strlen的使用和模拟实现、strcpy的使用和模拟实现、strcat的使用和模拟实现、strcmp的使用和模拟实现
结语:本篇文章就到此结束了,本文为友友们分享了数据在内存中的存储相关的一些重要知识点,如果友友们有补充的话欢迎在评论区留言,在这里感谢友友们的关注与支持!