星海智算【Ollama-Linux镜像】云部署

1、GPU工作状态验证及初始化系统

nvidia-smi

在云部署前,请先查看显卡状态,如果出现异常请及时联系平台客服解决

 查看完显卡状态后,对现有的Ubuntu镜像的系统软件、显卡驱动、各应用软件进行升级以满足自身需求

apt update && apt upgrade

执行后需要输入Y回车,因为输出内容过多,本文档只展示最终完成结果

选择install the package maintainer's version,整个安装的过程较长,请耐心等待

完成后系统会自动进行重启,点击Terminal重新进入终端即可

2、安装Ollama服务

Ollama官网地址:https://ollama.com/

进入官网之后点击download,选择Linux版本下载,直接复制下载命令 

在此之前,可选择进行学术加速加快下载速度

source /etc/network_turbo

如下图所示,说明Ollama服务安装成功

3、配置模型下载地址到网盘共享目录

为了既不占用云主机的本地硬盘,同时假如多开服务器的话,又可以共享给自己账号里其他云主机使用 ollama 模型,无需重复下载。因此,迁移ollama软件安装目录到网盘目录。

按顺序执行以下命令即可,先停止已经启动的ollama服务

systemctl stop ollama
ollama -v

再次提醒,必须看到Warning: client version is 0.1.48才能继续操作

再执行以下命令

mv /usr/share/ollama/ /mnt/storage/
ln -s /mnt/storage/ollama/ /usr/share/
systemctl start ollama
ollama -v

对以上的几个命令进行简单解释:

Mv 是把ollama默认安装的位置剪切到网盘目录去

ln 命令是把网盘目录的ollama再创建一个软连接放回到默认路径

Systemctl 是再次启动ollama服务

注意执行mv命令的时候千万不要终端,否则就得重新安装ollama才能确保不丢失文件了

执行完成之后,可以在个人网盘中看见ollama文件夹,请勿随意移动,任何删除、改名、移动位置操作都会导致ollama服务无法启动

4、安装Open-Webui

安装open-webui的目的是方便通过web方式去使用ollama服务

首先通过conda创建一个python3.11版本的虚拟环境,防止多个环境在云主机里并存从而造成冲突

conda create -n webui python=3.11

创建完成后,激活虚拟环境

conda activate webui

看见base->webui说明成功进入到创建的虚拟环境中

使用pip命令安装webui,执行以下命令

pip install open-webui -i https://pypi.tuna.tsinghua.edu.cn/simple

下载安装过程会比较久,请耐心等待

 检查open-webui安装是否成功,正常安装后显示如下

pip show open-webui

安装open-webui依赖的ffmpeg,否则启动时会报错

apt install -y ffmpeg

5、启动Open-webui并进行SSH隧道映射web服务

第一次启动时,会自动下载huggingface依赖环境,所以需要先执行加速命令

source /etc/network_turbo
open-webui serve

最后出现running on http://0.0.0.0:8080就说明启动成功后,注意在使用过程中不要关闭ssh窗口也不要按ctrl+c

成功启动后,使用ssh隧道映射web服务,新开一个窗口后输入如下格式的命令

ssh -p xxxxx -N -L 8888:localhost:8080 root@xxx.xxx.xxx.xx

 将实例界面的信息复制后填入即可

 浏览器输入http://127.0.0.1:8888即可访问

 注册或者登录账号后即可使用

点击左下角头像,点击管理员面板,选择模型,进行模型下载

输入模型名称后,点击右侧进行下载

模型下载完毕后可进行对话,以gemma2为例,下载后可以在界面内选择已经下载的模型

6.关于星海智算

https://gpu.spacehpc.com/

欢迎使用星海智算,星海智算由北京三轴空间科技有限公司开发,由非盈利组织龙游星海算力产业中心运营的高性能GPU算力云平台。

星海团队长期致力于为图像渲染、科研高性能计算等提供服务。星海AI算力服务平台,获超高速增长,团队规模有100余人,服务了国内AI行业的许多一线团队。

### 如何在Linux服务器上安装Ollama并部署DeepSeek #### 准备工作 确保Linux服务器已更新至最新状态,并具备必要的依赖项。对于Ubuntu系统,可以通过以下命令来实现环境准备: ```bash sudo apt-get update && sudo apt-get upgrade -y ``` #### 下载与安装Ollama 前往Ollama官方网站[^1],获取适用于Linux系统的安装文件链接。通常情况下,这会是一个`.deb`或`.tar.gz`格式的文件。 如果下载的是.deb包,则可以利用dpkg命令来进行安装;如果是.tar.gz压缩包则需解压到指定位置再做配置。这里假设官方提供了.deb形式的分发版: ```bash wget https://ollama.ai/download/ollama_latest_amd64.deb # 替换为实际URL sudo dpkg -i ollama_latest_amd64.deb # 安装软件包 ``` #### 配置与初始化设置 安装完毕之后可能还需要做一些额外的配置工作,比如调整服务启动参数、创建所需的目录结构等操作。具体步骤取决于所使用的版本以及个人偏好设定。 #### 启动服务 一旦上述准备工作都已完成,就可以尝试启动Ollama的服务端程序了。一般而言,通过systemctl管理的服务可以直接用如下方式开启: ```bash sudo systemctl start ollama.service # 开启服务 sudo systemctl enable ollama.service # 设置开机自启 ``` #### 部署DeepSeek模型 当Ollama平台已经正常运行起来以后,接下来就是加载想要使用的AI模型——即这里的DeepSeek。根据文档说明[^2],应该有专门用于导入预训练权重或者微调现有模型的方法论可供遵循。 #### 访问Web界面 最后一步是在浏览器里打开http://localhost:8080地址查看是否能够成功连接到Open WebUI页面[^3]。这意味着整个流程结束并且一切运作良好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值